login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A208426 G.f.: Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)/(1-3*x)^(3*n+1). 2
1, 3, 15, 99, 711, 5373, 42099, 338355, 2771127, 23028813, 193610385, 1643215005, 14056350075, 121040308665, 1048212778635, 9122168556819, 79727173530327, 699443806767525, 6156776010386481, 54356715121718349, 481194980656865721, 4270165015550478003 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Compare g.f. to: Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)/(1-2*x)^(3*n+1), which is a g.f. of the Franel numbers (A000172).

Diagonal of rational functions 1/(1 - x*y - y*z - x*z - 3*x*y*z), 1/(1 - x*y + y*z + x*z - 3*x*y*z). - Gheorghe Coserea, Jul 04 2018

LINKS

Gheorghe Coserea, Table of n, a(n) for n = 0..200

FORMULA

From Gheorghe Coserea, Jul 04 2018: (Start)

a(n) = Sum_{k=0..floor(n/2)} (n+k)!/(k!^3*(n-2*k)!) * 3^(n-2*k).

G.f. y=A(x) satisfies: 0 = x*(3*x + 2)*(27*x^3 + 9*x - 1)*y'' + (243*x^4 + 216*x^3 + 27*x^2 + 36*x - 2)*y' + 3*(27*x^3 + 33*x^2 - 2*x + 2)*y.

(End)

EXAMPLE

G.f.: A(x) = 1 + 3*x + 15*x^2 + 99*x^3 + 711*x^4 + 5373*x^5 + 42099*x^6 + ...

where

A(x) = 1/(1-3*x) + 6*x^2/(1-3*x)^4 + 90*x^4/(1-3*x)^7 + 1680*x^6/(1-3*x)^10 + 34650*x^8/(1-3*x)^13 + 756756*x^10/(1-3*x)^16 + ...

PROG

(PARI) {a(n)=polcoeff(sum(m=0, n, (3*m)!/m!^3*x^(2*m)/(1-3*x+x*O(x^n))^(3*m+1)), n)}

for(n=0, 31, print1(a(n), ", "))

(PARI) a(n) = sum(k=0, n\2, (n+k)!/(k!^3*(n-2*k)!) * 3^(n-2*k)); \\ Gheorghe Coserea, Jul 04 2018

CROSSREFS

Cf. A000172, A002893, A208425.

Sequence in context: A140286 A199416 A046635 * A168344 A091713 A156106

Adjacent sequences:  A208423 A208424 A208425 * A208427 A208428 A208429

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Feb 26 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 14 01:55 EDT 2020. Contains 336476 sequences. (Running on oeis4.)