This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A208333 Triangle of coefficients of polynomials v(n,x) jointly generated with A208332; see the Formula section. 3
 1, 0, 4, 0, 2, 10, 0, 2, 6, 28, 0, 2, 6, 24, 76, 0, 2, 6, 28, 80, 208, 0, 2, 6, 32, 100, 264, 568, 0, 2, 6, 36, 120, 360, 840, 1552, 0, 2, 6, 40, 140, 464, 1232, 2624, 4240, 0, 2, 6, 44, 160, 576, 1680, 4128, 8064, 11584, 0, 2, 6, 48, 180, 696, 2184, 5952 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS As triangle T(n,k) with 0<=k<=n, it is (0, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (4, -3/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 28 2012 LINKS FORMULA u(n,x)=u(n-1,x)+x*v(n-1,x), v(n,x)=2x*u(n-1,x)+2x*v(n-1,x), where u(1,x)=1, v(1,x)=1. (START) As triangle with 0<=k<=n : T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - 2*T(n-2,k-1) + 2*T(n-2,k-2) with T(0,0) = 1, T(1,0) = 0, T(1,1) = 4 and T(n,k) = 0 if k<0 or if k>n. G;f : (1-x+2*y*x)/(1-x-2*y*x+2*y*x^2-2*y^2*x^2). T(n,n) = A026150(n+1). Sum_{k, 0<=k<=n} T(n,k) = A003946(n).(END)- Philippe Deléham, Feb 28 2012 EXAMPLE First five rows: 1 0...4 0...2...10 0...2...6...28 0...2...6...24...76 First five polynomials u(n,x): 1, 4x, 2x + 10x^2, 2x + 6x^2 + 28x^3, 2x + 6x^2 + 24x^3 + 76x^4. MATHEMATICA u[1, x_] := 1; v[1, x_] := 1; z = 13; u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]; v[n_, x_] := 2 x*u[n - 1, x] + 2 x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%]  (* A208332 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%]  (* A208333 *) CROSSREFS Cf. A003946, A026150, A208332. Sequence in context: A275983 A285750 A282279 * A279413 A208748 A134895 Adjacent sequences:  A208330 A208331 A208332 * A208334 A208335 A208336 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Feb 26 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 11:09 EDT 2019. Contains 328216 sequences. (Running on oeis4.)