login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A208330 Triangle of coefficients of polynomials u(n,x) jointly generated with A208331; see the Formula section. 3

%I

%S 1,1,1,1,2,3,1,3,9,5,1,4,18,20,11,1,5,30,50,55,21,1,6,45,100,165,126,

%T 43,1,7,63,175,385,441,301,85,1,8,84,280,770,1176,1204,680,171,1,9,

%U 108,420,1386,2646,3612,3060,1539,341,1,10,135,600,2310,5292,9030

%N Triangle of coefficients of polynomials u(n,x) jointly generated with A208331; see the Formula section.

%C Subtriangle of the triangle given by (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 18 2012

%F u(n,x)=u(n-1,x)+x*v(n-1,x),

%F v(n,x)=2x*u(n-1,x)+(x+1)*v(n-1,x),

%F where u(1,x)=1, v(1,x)=1.

%F T(n,k) = A001045(k+1)*binomial(n-1,k). - _Philippe Deléham_, Mar 18 2012

%F T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1) + 2*T(n-2,k-2), T(1,0) = T(2,0) = T(2,1) = 1, T(n,k) = 0 if k<0 or if k>=n. - _Philippe Deléham_, Mar 18 2012

%e First five rows:

%e 1

%e 1...1

%e 1...2...3

%e 1...3...9....5

%e 1...4...18...20...11

%e First five polynomials u(n,x):

%e 1, 1 + x, 1 + 2x + 3x^2, 1 + 3x + 9x^2 + 5x^3, 1 + 4x + 18x^2 + 20x^3 + 11x^4.

%e (1, 0, 0, 1, 0, 0, ...) DELTA (0, 1, 2, -2, 0, 0, ...) begins :

%e 1

%e 1, 0

%e 1, 1, 0

%e 1, 2, 3, 0

%e 1, 3, 9, 5, 0

%e 1, 4, 18, 20, 11, 0

%e 1, 5, 30, 50, 55, 21, 0. - _Philippe Deléham_, Mar 18 2012

%t u[1, x_] := 1; v[1, x_] := 1; z = 13;

%t u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];

%t v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x];

%t Table[Expand[u[n, x]], {n, 1, z/2}]

%t Table[Expand[v[n, x]], {n, 1, z/2}]

%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

%t TableForm[cu]

%t Flatten[%] (* A208330 *)

%t Table[Expand[v[n, x]], {n, 1, z}]

%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

%t TableForm[cv]

%t Flatten[%] (* A208331 *)

%Y Cf. A208331, A208510.

%K nonn,tabl

%O 1,5

%A _Clark Kimberling_, Feb 26 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 21 13:45 EST 2014. Contains 252321 sequences.