login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A208330 Triangle of coefficients of polynomials u(n,x) jointly generated with A208331; see the Formula section. 3

%I

%S 1,1,1,1,2,3,1,3,9,5,1,4,18,20,11,1,5,30,50,55,21,1,6,45,100,165,126,

%T 43,1,7,63,175,385,441,301,85,1,8,84,280,770,1176,1204,680,171,1,9,

%U 108,420,1386,2646,3612,3060,1539,341,1,10,135,600,2310,5292,9030

%N Triangle of coefficients of polynomials u(n,x) jointly generated with A208331; see the Formula section.

%C Subtriangle of the triangle given by (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 18 2012

%F u(n,x)=u(n-1,x)+x*v(n-1,x),

%F v(n,x)=2x*u(n-1,x)+(x+1)*v(n-1,x),

%F where u(1,x)=1, v(1,x)=1.

%F T(n,k) = A001045(k+1)*binomial(n-1,k). - _Philippe Deléham_, Mar 18 2012

%F T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1) + 2*T(n-2,k-2), T(1,0) = T(2,0) = T(2,1) = 1, T(n,k) = 0 if k<0 or if k>=n. - _Philippe Deléham_, Mar 18 2012

%e First five rows:

%e 1

%e 1...1

%e 1...2...3

%e 1...3...9....5

%e 1...4...18...20...11

%e First five polynomials u(n,x):

%e 1, 1 + x, 1 + 2x + 3x^2, 1 + 3x + 9x^2 + 5x^3, 1 + 4x + 18x^2 + 20x^3 + 11x^4.

%e (1, 0, 0, 1, 0, 0, ...) DELTA (0, 1, 2, -2, 0, 0, ...) begins :

%e 1

%e 1, 0

%e 1, 1, 0

%e 1, 2, 3, 0

%e 1, 3, 9, 5, 0

%e 1, 4, 18, 20, 11, 0

%e 1, 5, 30, 50, 55, 21, 0. - _Philippe Deléham_, Mar 18 2012

%t u[1, x_] := 1; v[1, x_] := 1; z = 13;

%t u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];

%t v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x];

%t Table[Expand[u[n, x]], {n, 1, z/2}]

%t Table[Expand[v[n, x]], {n, 1, z/2}]

%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

%t TableForm[cu]

%t Flatten[%] (* A208330 *)

%t Table[Expand[v[n, x]], {n, 1, z}]

%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

%t TableForm[cv]

%t Flatten[%] (* A208331 *)

%Y Cf. A208331, A208510.

%K nonn,tabl

%O 1,5

%A _Clark Kimberling_, Feb 26 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 6 00:38 EST 2016. Contains 278771 sequences.