login
Numbers having exactly one partition into two prime powers.
2

%I #17 Mar 01 2019 03:16:33

%S 2,3,119,127,163,179,191,193,217,219,221,223,239,251,269,311,337,343,

%T 389,403,415,419,427,431,457,491,505,547,557,569,575,581,583,597,599,

%U 613,653,659,667,671,673,683,697,719,739,749,767,779,787,799,807,817

%N Numbers having exactly one partition into two prime powers.

%C A071330(a(n)) = 1.

%H Reinhard Zumkeller, <a href="/A208247/b208247.txt">Table of n, a(n) for n = 1..10000</a>

%o (Haskell)

%o a095841 n = a095841_list !! (n-1)

%o a095841_list = filter ((== 1) . a071330) a000961_list

%o (PARI) is(n)=sum(i=2,n\2,isprimepower(i)&&isprimepower(n-i))+isprimepower(n-1)==1 || n==2 \\ naive; _Charles R Greathouse IV_, Nov 21 2014

%o (PARI) is(n)=my(s); forprime(p=2,n\2,if(isprimepower(n-p) && s++>1, return(0))); for(e=2,log(n)\log(2), forprime(p=2, sqrtnint(n\2,e), if(isprimepower(n-p^e) && s++>1,return(0)))); s+(!!isprimepower(n-1))==1 || n==2 \\ faster; _Charles R Greathouse IV_, Nov 21 2014

%Y A095841 = Intersection of A208247 and A000961.

%K nonn

%O 1,1

%A _Reinhard Zumkeller_, Jan 11 2013