login
A208224
a(n)=(a(n-1)^2*a(n-3)^3+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1.
4
1, 1, 1, 1, 2, 5, 27, 5837, 2129410576, 17850077316687753782569, 2346851008195218976646246398770505953580095510848345967
OFFSET
0,5
COMMENTS
This is the case a=3, b=1, c=2, y(0)=y(1)=y(2)=y(3)=1 of the recurrence shown in the Example 3.3 of "The Laurent phenomenon" (see Link lines, p. 10).
The next term (a(11)) has 133 digits. - Harvey P. Dale, Mar 06 2017
LINKS
Sergey Fomin and Andrei Zelevinsky, The Laurent phenomenon, arXiv:math/0104241v1 [math.CO] (2001), Advances in Applied Mathematics 28 (2002), 119-144.
MAPLE
y:=proc(n) if n<4 then return 1: fi: return (y(n-1)^2*y(n-3)^3+y(n-2))/y(n-4): end:
seq(y(n), n=0..11);
MATHEMATICA
RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1, a[n]==(a[n-1]^2*a[n-3]^3+ a[n-2])/ a[n-4]}, a, {n, 10}] (* Harvey P. Dale, Mar 06 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Matthew C. Russell, Apr 25 2012
STATUS
approved