The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A208222 a(n) = (a(n-1)^3*a(n-3)^2+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1. 4
 1, 1, 1, 1, 2, 9, 731, 1562471573, 154486807085783774292345385804 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS This is the case a=2, b=1, c=3, y(0)=y(1)=y(2)=y(3)=1 of the recurrence shown in the Example 3.3 of "The Laurent phenomenon" (see Link lines, p. 10). LINKS Seiichi Manyama, Table of n, a(n) for n = 0..11 Sergey Fomin and Andrei Zelevinsky, The Laurent phenomenon, arXiv:math/0104241v1 [math.CO] (2001), Advances in Applied Mathematics 28 (2002), 119-144. MAPLE y:=proc(n) if n<4 then return 1: fi: return (y(n-1)^3*y(n-3)^2+y(n-2))/y(n-4): end: seq(y(n), n=0..9); MATHEMATICA a[n_]:=If[n<4, 1, (a[n - 1]^3*a[n - 3]^2 + a[n - 2])/a[n - 4]]; Table[a[n], {n, 0, 11}] (* Indranil Ghosh, Mar 19 2017 *) nxt[{a_, b_, c_, d_}]:={b, c, d, (d^3 b^2+c)/a}; NestList[nxt, {1, 1, 1, 1}, 10][[All, 1]] (* Harvey P. Dale, May 31 2020 *) CROSSREFS Cf. A048736, A208219, A208221, A208225. Sequence in context: A023366 A000284 A208219 * A208225 A208228 A262089 Adjacent sequences:  A208219 A208220 A208221 * A208223 A208224 A208225 KEYWORD nonn AUTHOR Matthew C. Russell, Apr 25 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 01:48 EDT 2020. Contains 336474 sequences. (Running on oeis4.)