The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A208221 a(n)=(a(n-1)^2*a(n-3)^2+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1. 3
 1, 1, 1, 1, 2, 5, 27, 2921, 106653026, 1658455747832683945, 869174798276372512100586962107665002957113 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS This is the case a=2, b=1, c=2, y(0)=y(1)=y(2)=y(3)=1 of the recurrence shown in the Example 3.3 of "The Laurent phenomenon" (see Link lines, p. 10). The next term (a(11)) has 97 digits. - Harvey P. Dale, Dec 17 2017 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..13 Sergey Fomin and Andrei Zelevinsky, The Laurent phenomenon, arXiv:math/0104241v1 [math.CO] (2001); Advances in Applied Mathematics 28 (2002), 119-144. MAPLE y:=proc(n) if n<4 then return 1: fi: return (y(n-1)^2*y(n-3)^2+y(n-2))/y(n-4): end: seq(y(n), n=0..11); MATHEMATICA a[n_] := a[n] = If[n <= 3, 1, (a[n-1]^2*a[n-3]^2 + a[n-2])/a[n-4]]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Nov 24 2017 *) RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1, a[n]==(a[n-1]^2 a[n-3]^2+ a[n-2])/ a[n-4]}, a, {n, 12}] (* Harvey P. Dale, Dec 17 2017 *) CROSSREFS Cf. A048736, A208218, A208220, A208222, A208224. Sequence in context: A057438 A002795 A208218 * A208224 A208227 A127357 Adjacent sequences:  A208218 A208219 A208220 * A208222 A208223 A208224 KEYWORD nonn AUTHOR Matthew C. Russell, Apr 25 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 6 11:55 EDT 2020. Contains 336246 sequences. (Running on oeis4.)