login
A208154
6-Knödel numbers.
12
8, 10, 12, 18, 24, 30, 36, 42, 66, 72, 78, 84, 90, 102, 114, 126, 138, 168, 174, 186, 210, 222, 234, 246, 252, 258, 282, 318, 354, 366, 390, 396, 402, 426, 438, 456, 474, 498, 504, 534, 546, 582, 606, 618, 630, 642, 654, 678, 762, 786, 798, 822, 834, 894, 906
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Knödel Numbers.
MAPLE
with(numtheory);
knodel:= proc(i, k)
local a, n, ok;
for n from k+1 to i do
ok:=1;
for a from 1 to n do
if gcd(a, n)=1 then if (a^(n-k) mod n)<>1 then ok:=0; break; fi; fi;
od;
if ok=1 then print(n); fi;
od;
end:
knodel(10000, 6);
MATHEMATICA
knodelQ[m_Integer?PrimeQ, n_Integer] := False; knodelQ[m_Integer, n_Integer] := Module[{i = n + 1}, While[i < m && (GCD[i, m] > 1 || Mod[i^(m - n), m] == 1), i++]; (i == m)]; Select[Range[1000], knodelQ[#, 6] &] (* Alonso del Arte, Feb 24 2012 *)
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Feb 24 2012
STATUS
approved