The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A208133 Total number of subgroups of rank <= 2 of a certain class of abelian groups of order n defined as direct products of Z/(mZ) X Z/(kZ) with m|k. 5
 1, 2, 2, 8, 2, 4, 2, 12, 9, 4, 2, 16, 2, 4, 4, 31, 2, 18, 2, 16, 4, 4, 2, 24, 11, 4, 14, 16, 2, 8, 2, 42, 4, 4, 4, 72, 2, 4, 4, 24, 2, 8, 2, 16, 18, 4, 2, 62, 13, 22, 4, 16, 2, 28, 4, 24, 4, 4, 2, 32, 2, 4, 18, 90, 4, 8, 2, 16, 4, 8, 2, 108, 2, 4, 22, 16 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Level function l_tau^2(n) of Bhowmik and Wu. Records occur at 1, 2, 4, 8, 12, 16, 32, 36, 64, 72, 108, 128, 144, 288, 432, 576, 1152, 1296, 2304, 3600, 5184, 7200, 9216, 10368, 14112, 14400, 20736, 28224, 28800, 32400, 57600, ... and they are: 1, 2, 8, 12, 16, 31, 42, 72, 90, 108, 112, 116, 279, 378, 434, 810, 1044, 1302, 2025, 3069, 3780, 4158, 4644, 4872, 4914, 8910, 9450, 10530, 11484, 14322, 22275, ... - Antti Karttunen, Mar 21 2018 REFERENCES A. Laurincikas, The universality of Dirichlet series attached to finite Abelian groups, in "Number Theory", Proc. Turku Sympos. on Number Theory, May 31-June 4, 1999, p 179. LINKS Antti Karttunen, Table of n, a(n) for n = 1..65537 G. Bhowmik, Jie Wu, Zeta function of subgroups of abelian groups and average orders, J. reine angew. Math. 530 (2001) 1-15. Vaclav Kotesovec, Graph - the asymptotic ratio (1000000 terms) FORMULA Dirichlet g.f.: zeta(s)^2*zeta(2s)^2*zeta(2s-1)*Product_{primes p} (1 + 1/p^(2s) - 2/p^(3s)). Sum_{k=1..n} a(k) ~ c * Pi^4 * log(n)^2 * n / 144, where c = A330594 = Product_{primes p} (1 + 1/p^2 - 2/p^3) = 1.10696011195321767665117913000743959294954883365812241904313404497877733241... - Vaclav Kotesovec, Dec 18 2019 More precise asymptotics: Let f(s) = Product_{primes p} (1 + 1/p^(2*s) - 2/p^(3*s)), then Sum_{k=1..n} a(k) ~ n*Pi^2 * (Pi^2 * f(1) * log(n)^2 + 2*Pi^2 * log(n) * (f(1) * (-1 + 8*gamma - 48*log(A) + 4*log(2*Pi)) + f'(1)) + Pi^2 * (2*f(1)*(1 + 25*gamma^2 + 576*log(A)^2 + log(A) * (48 - 96*log(2*Pi)) - 8*gamma * (1 + 36*log(A) - 3*log(2*Pi)) - 4*log(2*Pi) + 4*log(2*Pi)^2 - 6*sg1) + 2*(-1 + 8*gamma - 48*log(A) + 4*log(2*Pi))*f'(1) + f''(1)) + 48*f(1)*zeta''(2)) / 144, where f(1) = A330594, f'(1) = A330594 * (-A335705) = f(1) * Sum_{primes p} = -2*(p-3) * log(p) / (p^3 + p - 2) = -0.087825458097278818094375273108270679512035928574..., f''(1) = A330594 * (A335705^2 + A335706) = f'(1)^2/f(1) + f(1) * Sum_{primes p} = 2*p*(2*p^3 - 9*p^2 - 1) * log(p)^2) / (p^3 + p - 2)^2 =  0.26722508718782634450711076996710402451611235402675360769..., zeta''(2) = A201994, A is the Glaisher-Kinkelin constant A074962, gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Jun 18 2020 MAPLE L300828 := [ 1, 0, 0, 1, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 ] ; L010052 := [ 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]; L037213 := [ 1, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ; Lx := DIRICHLET(L300828, L037213) ; Lx := DIRICHLET(Lx, L010052) ; Lx := DIRICHLET(Lx, L010052) ; Lx := MOBIUSi(Lx) ; Lx := MOBIUSi(Lx) ; # Name of initial list L1 changed to L300828 to refer to sequence A300828 by Antti Karttunen, Mar 21 2018 PROG (PARI) A037213(n) = if(issquare(n), sqrtint(n), 0); A300828(n) = { if(1==n, return(1)); my(val=1, v=factor(n), d=matsize(v)[1]); for(i=1, d, if(v[i, 2] < 2 || v[i, 2] > 3, return(0)); if (v[i, 2] == 3, val *= -2)); return(val); }; a208133s1(n) = sumdiv(n, d, A037213(n/d)*A300828(d)); a208133s2(n) = sumdiv(n, d, issquare(n/d)*a208133s1(d)); a208133s3(n) = sumdiv(n, d, issquare(n/d)*a208133s2(d)); a208133s4(n) = sumdiv(n, d, a208133s3(d)); A208133(n) = sumdiv(n, d, a208133s4(d)); \\ Antti Karttunen, Mar 21 2018, after R. J. Mathar's Maple code (PARI) for(n=1, 100, print1(direuler(p=2, n, (1 + X + 2*X^2)/(1 - X)^3/(1 + X)^2/(1 - p*X^2))[n], ", ")) \\ Vaclav Kotesovec, Jun 18 2020 CROSSREFS Cf. A010052, A037213, A300828. Sequence in context: A037300 A029623 A325753 * A046644 A161915 A174354 Adjacent sequences:  A208130 A208131 A208132 * A208134 A208135 A208136 KEYWORD nonn,mult AUTHOR R. J. Mathar, Mar 29 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 20:13 EDT 2020. Contains 337321 sequences. (Running on oeis4.)