login
Number of n X 3 0..1 arrays avoiding 0 0 0 and 1 1 1 horizontally and 0 0 1 and 0 1 1 vertically.
1

%I #8 Jun 27 2018 05:50:17

%S 6,36,72,144,216,324,432,576,720,900,1080,1296,1512,1764,2016,2304,

%T 2592,2916,3240,3600,3960,4356,4752,5184,5616,6084,6552,7056,7560,

%U 8100,8640,9216,9792,10404,11016,11664,12312,12996,13680,14400,15120,15876,16632

%N Number of n X 3 0..1 arrays avoiding 0 0 0 and 1 1 1 horizontally and 0 0 1 and 0 1 1 vertically.

%C Column 3 of A208069.

%H R. H. Hardin, <a href="/A208064/b208064.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>5.

%F Conjectures from _Colin Barker_, Jun 27 2018: (Start)

%F G.f.: 6*x*(1 + 4*x + 2*x^3 - x^4) / ((1 - x)^3*(1 + x)).

%F a(n) = 9*n^2 for n>1 and even.

%F a(n) = 9*n^2-9 for n>1 and odd.

%F (End)

%e Some solutions for n=4:

%e ..0..0..1....1..1..0....1..1..0....0..1..1....1..1..0....0..0..1....0..0..1

%e ..0..1..1....1..0..1....1..1..0....1..1..0....0..0..1....0..1..1....0..0..1

%e ..0..0..1....1..0..0....1..0..0....0..1..1....1..1..0....0..0..1....0..0..1

%e ..0..0..1....0..0..1....1..1..0....1..0..0....0..0..1....0..1..0....0..0..1

%Y Cf. A208069.

%K nonn

%O 1,1

%A _R. H. Hardin_, Feb 23 2012