login
Primes p of the form p = prime(n) + prime(n+1) - 5 and p = prime(k) + prime(k+1) + 5.
1

%I #15 Mar 13 2013 22:02:23

%S 13,47,73,157,167,263,467,757,877,887,2027,2593,3203,3733,4273,4703,

%T 4787,5087,5387,6373,6637,7393,7823,8893,9587,10007,10163,12433,13933,

%U 15083,15287,15373,16333,17387,17483,18013,18313,19237,19477,20327,21467,23567

%N Primes p of the form p = prime(n) + prime(n+1) - 5 and p = prime(k) + prime(k+1) + 5.

%C n = k+1 or k+2. - _Charles R Greathouse IV_, Apr 16 2012

%H Harvey P. Dale, <a href="/A207992/b207992.txt">Table of n, a(n) for n = 1..1000</a>

%e 3+5+5 = 13 = 7+11-5, 23+29-5 = 47 = 19+23+5

%t a1 = Select[Table[Prime[n] + Prime[n + 1] - 5, {n, 2010}], PrimeQ]; a2 = Select[Table[Prime[n] + Prime[n + 1] + 5, {n, 2000}], PrimeQ]; Intersection[a1, a2]

%t With[{pr=Transpose[#+{5,-5}&/@Total/@Partition[Prime[Range[3000]],2,1]]}, Select[Intersection[pr[[1]],pr[[2]]], PrimeQ]] (* _Harvey P. Dale_, Mar 13 2013 *)

%o (PARI) p=2;q=3;r=5;forprime(s=7,1e4,if((r==p+10||r+s==p+q+10) && isprime(p+q+5), print1(p+q+5", "));p=q;q=r;r=s) \\ _Charles R Greathouse IV_, Apr 16 2012

%Y Cf. A072669, A092738, A207990, A207991.

%K nonn,less

%O 1,1

%A _Vladimir Joseph Stephan Orlovsky_, Feb 22 2012