login
A207851
Number of meanders of order 2n+1 (4*n+2 crossings of the infinite line) with only central 1-1 cut (no other 1-1 cuts).
2
4, 16, 324, 12100, 595984, 35236096, 2363709924, 174221090404, 13815880848784, 1161868621405636, 102544273501721104, 9424551852935116804, 896612457556434503824, 87881363502264179831824, 8840846163309028336017124
OFFSET
1,1
COMMENTS
Central cut is a 1-1 cut at the center of the meander (the i-line is for i=n).
REFERENCES
A. Panayotopoulos and P. Tsikouras, Properties of meanders, JCMCC 46 (2003), 181-190.
A. Panayotopoulos and P. Vlamos, Meandric Polygons, Ars Combinatoria 87 (2008), 147-159.
LINKS
Iwan Jensen, Enumeration of plane meanders, arXiv:cond-mat/9910313 [cond-mat.stat-mech], 1999.
S. K. Lando and A. K. Zvonkin, Plane and projective meanders, Theoretical Computer Science Vol. 117, pp. 227-241, 1993.
A. Panayotopoulos and P. Tsikouras, The multimatching property of nested sets, Math. & Sci. Hum. 149 (2000), 23-30.
A. Panayotopoulos and P. Tsikouras, Meanders and Motzkin Words, J. Integer Seqs., Vol. 7, 2004.
A. Panayotopoulos and P. Vlamos, Cutting Degree of Meanders, Artificial Intelligence Applications and Innovations, IFIP Advances in Information and Communication Technology, Volume 382, 2012, pp 480-489; DOI 10.1007/978-3-642-33412-2_49. - From N. J. A. Sloane, Dec 29 2012
PROG
(C/C++) int a(int n){
return w2(i)^2;
}
int w1(int order, int i){
if (i%2==0) error("error in w1(%d, %d), i is even\n", order, i);
if (order%2) error("error in w1(%d, %d), order is odd\n", order, i);
return w2(i+1)*w(order-i+1);
}
int w2(int order){
if (order%2) error("error in w2(%d), order is odd\n", order);
return w(order)-w3(order);
}
int w3(int order){
if (order%2) error("error in w3(%d), order is odd\n", order);
int sum=0;
int i;
for (i=3; i<=order-3; i+=2)
sum+=w1(order, i);
return sum;
}
// w(int i), no source here, is the respective meandric number according to Jensen A005315
CROSSREFS
Sequence in context: A095956 A014731 A023114 * A202681 A067211 A156337
KEYWORD
nonn
AUTHOR
STATUS
approved