login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A207835 G.f.: exp( Sum_{n>=1} 5*L(n)*x^n/n ), where L(n) = Fibonacci((n-1)^2) + Fibonacci((n+1)^2). 4
1, 15, 200, 3525, 134355, 16781664, 6730280105, 7679335074975, 23795707614699850, 197148338964056588955, 4337960355881995023988299, 252594793852565664429620014530, 38838042059493582778244565420563025, 15744729667082405326504405819215652913325 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Given g.f. A(x), note that A(x)^(1/5) is not an integer series.

Compare the definition to the g.f. of the Fibonacci numbers:

1/(1-x-x^2) = exp( Sum_{n>=1} Lucas(n)*x^n/n ), where Lucas(n) = Fibonacci(n-1) + Fibonacci(n+1).

LINKS

Table of n, a(n) for n=0..13.

EXAMPLE

G.f.: A(x) = 1 + 15*x + 200*x^2 + 3525*x^3 + 134355*x^4 + 16781664*x^5 +...

such that, by definition,

log(A(x))/5 = 3*x + 35*x^2/2 + 990*x^3/3 + 75059*x^4/4 + 14931339*x^5/5 + 7778817074*x^6/6 +...+ (Fibonacci((n-1)^2) + Fibonacci((n+1)^2))*x^n/n +...

PROG

(PARI) {L(n)=fibonacci((n-1)^2)+fibonacci((n+1)^2)}

{a(n)=polcoeff(exp(sum(m=1, n, 5*L(m)*x^m/m)+x*O(x^n)), n)}

for(n=0, 21, print1(a(n), ", "))

CROSSREFS

Cf. A207834, A156216, A166168.

Sequence in context: A014896 A048444 A002007 * A178507 A012566 A238992

Adjacent sequences:  A207832 A207833 A207834 * A207836 A207837 A207838

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Feb 20 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 10 02:20 EDT 2020. Contains 333392 sequences. (Running on oeis4.)