login
A207828
The number of unlabelled simple graphs with n nodes such that no two connected components are identical.
3
1, 1, 1, 3, 8, 29, 142, 1005, 12173, 273582, 11992634, 1018722089, 165079154766, 50501012094102, 29053990554043728, 31426435466753662607, 64000986650206797417763, 245935832726996459827917035, 1787577661144566941699523416191, 24637809007189108944313598892070582
OFFSET
0,4
FORMULA
O.g.f.: Product_{n >=1} (1+x^n)^A001349(n) where A001349 is the number of connected graphs.
EXAMPLE
a(4)=8 because there are eleven graphs with 4 nodes but three have (at least two) components that are identical: * * * * , *-* *-* , * * *-*
MATHEMATICA
nn=19; a={1, 1, 2, 6, 21, 112, 853, 11117, 261080, 11716571, 1006700565, 164059830476, 50335907869219, 29003487462848061, 31397381142761241960, 63969560113225176176277, 245871831682084026519528568, 1787331725248899088890200576580, 24636021429399867655322650759681644}; CoefficientList[Series[Product[(1+x^i)^a[[i]], {i, 1, nn}], {x, 0, nn}], x]
CROSSREFS
Sequence in context: A130470 A275166 A182117 * A208678 A162054 A289486
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Feb 20 2012
STATUS
approved