This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A207629 Triangle of coefficients of polynomials u(n,x) jointly generated with A207630; see the Formula section. 4
 1, 2, 5, 1, 11, 4, 23, 13, 1, 47, 37, 6, 95, 97, 25, 1, 191, 241, 87, 8, 383, 577, 271, 41, 1, 767, 1345, 783, 169, 10, 1535, 3073, 2143, 609, 61, 1, 3071, 6913, 5631, 2001, 291, 12, 6143, 15361, 14335, 6145, 1191, 85, 1, 12287, 33793, 35583, 17921 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS With offset 0, equals the stretched Riordan array ((1 - z + z^2)/(1 - 3*z + 2*z^2), z^2/(1 - 2*z)) in the notation of Corsani et al., Section 2. - Peter Bala, Dec 31 2015 LINKS C. Corsani, D. Merlini, R. Sprugnoli, Left-inversion of combinatorial sums Discrete Mathematics, 180 (1998) 107-122. FORMULA u(n,x) = u(n-1,x) + v(n-1,x), v(n,x) = (x + 1)*u(n-1,x) + v(n-1,x) + 1, where u(1,x) = 1, v(1,x) = 1. EXAMPLE First five rows:    1    2    5  1   11  4   23 13  1 MATHEMATICA u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1 Table[Factor[u[n, x]], {n, 1, z}] Table[Factor[v[n, x]], {n, 1, z}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%]    (* A207629 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%]    (* A207630 *) CROSSREFS Cf. A207630, A208510, A083329 (column 1). Sequence in context: A120235 A323411 A089618 * A207614 A156067 A263487 Adjacent sequences:  A207626 A207627 A207628 * A207630 A207631 A207632 KEYWORD nonn,tabf,easy AUTHOR Clark Kimberling, Feb 23 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 26 04:11 EDT 2019. Contains 324369 sequences. (Running on oeis4.)