%I #5 Mar 31 2012 12:37:18
%S 35,1225,4861,23276,160652,738515,3275898,16648464,77299468,346860730,
%T 1628437829,7520074031,34197531024,157677790883,726171154807,
%U 3326887874211,15303816884989,70464546420156,323991903658548
%N Number of 7Xn 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 1 1 and 1 1 0 vertically
%C Row 7 of A207564
%H R. H. Hardin, <a href="/A207568/b207568.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 7*a(n-1) -12*a(n-2) +66*a(n-3) -355*a(n-4) +267*a(n-5) -845*a(n-6) +5223*a(n-7) +2042*a(n-8) -38*a(n-9) -35986*a(n-10) -32364*a(n-11) +462*a(n-12) +151576*a(n-13) +113718*a(n-14) -7212*a(n-15) -265050*a(n-16) -171750*a(n-17) +35538*a(n-18) +249492*a(n-19) +31110*a(n-20) -88254*a(n-21) -112194*a(n-22) +56598*a(n-23) +69082*a(n-24) +41276*a(n-25) -31470*a(n-26) -11664*a(n-27) -1085*a(n-28) +5229*a(n-29) -2218*a(n-30) -420*a(n-31) -959*a(n-32) +257*a(n-33) -65*a(n-34) -33*a(n-35) +32*a(n-37)
%e Some solutions for n=4
%e ..0..1..1..1....0..1..1..1....1..0..0..0....1..0..1..1....0..0..0..0
%e ..1..1..0..0....0..0..0..0....0..0..0..0....1..0..0..0....0..0..0..0
%e ..0..1..1..1....1..0..0..0....1..0..1..1....1..0..1..1....0..1..1..0
%e ..1..1..0..0....0..0..0..0....0..0..0..0....1..1..0..0....1..0..0..0
%e ..0..1..1..0....1..1..1..0....1..0..1..1....1..0..0..0....0..0..0..0
%e ..1..1..0..0....0..0..0..0....0..0..0..0....1..1..0..0....0..0..0..0
%e ..0..1..1..0....0..1..1..0....1..0..1..1....1..0..1..1....1..1..1..1
%K nonn
%O 1,1
%A _R. H. Hardin_ Feb 18 2012