%I #22 Jan 01 2021 03:26:15
%S 1,1,1,1,1,1,1,1,1,1,1,1,12,23,45,89,177,353,705,1409,2817,5633,11265,
%T 22529,45057,90102,180181,360317,720545,1440913,2881473,5762241,
%U 11523073,23043329,46081025,92150785,184279041,368513025,736935948,1473691715
%N Dodecanacci numbers (12th-order Fibonacci sequence): a(n) = a(n-1) +...+ a(n-12) with a(0)=...=a(11)=1.
%H G. C. Greubel, <a href="/A207539/b207539.txt">Table of n, a(n) for n = 0..1000</a>
%H Kai Wang, <a href="https://www.researchgate.net/publication/344295426_IDENTITIES_FOR_GENERALIZED_ENNEANACCI_NUMBERS">Identities for generalized enneanacci numbers</a>, Generalized Fibonacci Sequences (2020).
%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,1,1,1,1,1,1,1,1,1,1).
%F G.f.: (1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11 +10*x^12)/(1 -2*x +x^13).
%p f12:=proc(n) option remember: if n<=12 then 1: else add(f12(n-i),i=1..12): fi: end:
%t LinearRecurrence[Table[1, {12}], Table[1, {12}], 100]
%o (PARI) x='x+O('x^50); Vec((1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9-x^10-x^11 +10*x^12)/(1-2*x+x^13)) \\ _G. C. Greubel_, Jul 28 2017
%Y Cf. A000045, A000213, A000288, A127624, A168083.
%K nonn,easy
%O 0,13
%A _Michael Burkhart_, Feb 18 2012