login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A207538 Triangle of coefficients of polynomials v(n,x) jointly generated with A207537; see Formula section. 15
1, 2, 4, 1, 8, 4, 16, 12, 1, 32, 32, 6, 64, 80, 24, 1, 128, 192, 80, 8, 256, 448, 240, 40, 1, 512, 1024, 672, 160, 10, 1024, 2304, 1792, 560, 60, 1, 2048, 5120, 4608, 1792, 280, 12, 4096, 11264, 11520, 5376, 1120, 84, 1, 8192, 24576, 28160, 15360 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

As triangle T(n,k) with 0<=k<=n and with zeros omitted, it is the triangle given by (2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 04 2012

The numbers in rows of the triangle are along "first layer" skew diagonals pointing top-left in center-justified triangle given in A013609 ((1+2*x)^n) and  along (first layer) skew diagonals pointing top-right in center-justified triangle given in A038207 ((2+x)^n), see links. - Zagros Lalo, Jul 31 2018

If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.414213562373095... (A014176: Decimal expansion of the silver mean, 1+sqrt(2)), when n approaches infinity. - Zagros Lalo, Jul 31 2018

REFERENCES

Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358

LINKS

Table of n, a(n) for n=1..53.

S. Halici, On some Pell polynomials , Acta Universitatis Apulensis, No. 29/2012, pp. 105-112.

Zagros Lalo, First layer skew diagonals in center-justified triangle of coefficients in expansion of (1 + 2x)^n

Zagros Lalo, First layer skew diagonals in center-justified triangle of coefficients in expansion of (2 + x)^n

FORMULA

u(n,x) = u(n-1,x)+(x+1)*v(n-1,x), v(n,x) = u(n-1,x)+v(n-1,x), where u(1,x) = 1, v(1,x) = 1. Also, A207538 = |A133156|.

From Philippe Deléham, Mar 04 2012: (Start)

With 0<=k<=n:

Mirror image of triangle in A099089.

Skew version of A038207.

Riordan array (1/(1-2*x), x^2/(1-2*x)).

G.f.: 1/(1-2*x-y*x^2).

Sum_{k, 0<=k<=n} T(n,k)*x^k = A190958(n+1), A127357(n), A090591(n), A089181(n+1), A088139(n+1), A045873(n+1), A088138(n+1), A088137(n+1), A099087(n), A000027(n+1), A000079(n), A000129(n+1), A002605(n+1), A015518(n+1), A063727(n), A002532(n+1), A083099(n+1), A015519(n+1), A003683(n+1), A002534(n+1), A083102(n), A015520(n+1), A091914(n) for x = -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 respectively.

T(n,k) = 2*T(n-1,k) + T(-2,k-1) with T(0,0) = 1, T(1,0) = 2, T(1,1) = 0 and T(n, k) = 0 if k<0 or if k>n. (End)

T(n,k) = A013609(n-k, n-2*k+1). - Johannes W. Meijer, Sep 05 2013

From Tom Copeland, Feb 11 2016: (Start)

A053117 is a reflected, aerated and signed version of this entry. This entry belongs to a family discussed in A097610 with parameters h1 = -2 and h2 = -y.

Shifted o.g.f.: G(x,t) = x / (1 - 2 x - t x^2).

The compositional inverse of G(x,t) is Ginv(x,t) = -[(1 + 2x) - sqrt[(1+2x)^2 + 4t x^2]] / (2tx) = x - 2 x^2 + (4-t) x^3 - (8-6t) x^4 + ..., a shifted o.g.f. for A091894 (mod signs with A091894(0,0) = 0).

(End)

EXAMPLE

First seven rows:

1

2

4...1

8...4

16..12..1

32..32..6

64..80..24..1

(2, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, ...) begins:

    1

    2,   0

    4,   1,  0

    8,   4,  0, 0

   16,  12,  1, 0, 0

   32,  32,  6, 0, 0, 0

   64,  80, 24, 1, 0, 0, 0

  128, 192, 80, 8, 0, 0, 0, 0

MATHEMATICA

u[1, x_] := 1; v[1, x_] := 1; z = 16;

u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]

v[n_, x_] := u[n - 1, x] + v[n - 1, x]

Table[Factor[u[n, x]], {n, 1, z}]

Table[Factor[v[n, x]], {n, 1, z}]

cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

TableForm[cu]

Flatten[%]  (* A207537, |A028297| *)

Table[Expand[v[n, x]], {n, 1, z}]

cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

TableForm[cv]

Flatten[%]  (* A207538, |A133156| *)

t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Zagros Lalo, Jul 31 2018 *)

t[n_, k_] := t[n, k] = 2^(n - 2 k) * (n -  k)!/((n - 2 k)! k!) ; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]} ]  // Flatten (* Zagros Lalo, Jul 31 2018 *)

CROSSREFS

Cf. A028297, A207537, A133156, A038207, A099089.

Cf. A053117, A097610, A091894.

Cf. A013609, A038207.

Cf. A128099.

Sequence in context: A226504 A152195 A133156 * A127529 A091977 A112829

Adjacent sequences:  A207535 A207536 A207537 * A207539 A207540 A207541

KEYWORD

nonn,tabf

AUTHOR

Clark Kimberling, Feb 18 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 26 20:37 EDT 2019. Contains 324380 sequences. (Running on oeis4.)