%I #34 Nov 21 2013 13:07:47
%S 95,119,143,215,287,335,407,455,527,551,575,623,671,695,767,791,815,
%T 935,959,1007,1055,1079,1127,1175,1199,1247,1271,1295,1343,1391,1415,
%U 1463,1535,1631,1655,1679,1703,1727,1751,1775,1799,1895,1919,1943,1967,1991,2015
%N Composites of the form 24n - 1.
%C Also denominators that are composite numbers A002808 in the Bruinier-Ono formula for the partition function (see A183010 and A183011).
%C The union of A134517 and this sequence gives A183010.
%F A002808 INTERSECT A183010.
%t Select[24*Range[250] - 1, ! PrimeQ[#] &] (* _Vladimir Joseph Stephan Orlovsky_, Feb 26 2012 *)
%Y Cf. A008606, A134517, A183010, A183011.
%K nonn
%O 1,1
%A _Omar E. Pol_, Feb 18 2012