login
Number of 2 X n 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 0 1 vertically.
18

%I #11 Jun 19 2023 16:01:47

%S 4,16,36,81,169,361,784,1681,3600,7744,16641,35721,76729,164836,

%T 354025,760384,1633284,3508129,7535025,16184529,34762816,74666881,

%U 160376896,344473600,739894401,1589218225,3413480625,7331811876,15747991081

%N Number of 2 X n 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 0 1 vertically.

%H R. H. Hardin, <a href="/A207170/b207170.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = a(n-1) +a(n-2) +3*a(n-3) +a(n-4) -a(n-5) -a(n-6) for n>7

%F G.f: 4*x -x^2*(-16-20*x-29*x^2-4*x^3+13*x^4+9*x^5) / ( (x^3+2*x^2+x-1)*(x^3-x^2-1) ). - _R. J. Mathar_, Aug 10 2017

%F Empirical: 31*a(n) = 114*A002478(n) +133*A002478(n-1) +55*A002478(n) +10*A077961(n) +32*A077961(n-1) -24*A077961(n-2) for n>1. - _R. J. Mathar_, Nov 09 2018

%e Some solutions for n=4

%e ..1..1..1..1....1..0..0..1....0..1..1..0....1..1..1..1....1..0..0..1

%e ..0..1..1..1....1..0..0..1....0..1..1..0....1..1..1..1....1..1..1..1

%Y Row 2 of A207169.

%Y Cf. A002478.

%K nonn

%O 1,1

%A _R. H. Hardin_, Feb 15 2012