login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A207136 a(n) = Sum_{k=0..n} binomial(n^2, k*(n-k)). 8
1, 2, 6, 74, 2942, 379502, 155417946, 200991082378, 814134608643518, 10305926982053248142, 406157795399324680023006, 49758289996116571598723737976, 18917910771770463473290738891259546, 22290399373603219140501180230536732389992 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Ignoring initial term a(0), equals the logarithmic derivative of A207135.

Equals the row sums of triangle A228836.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..64

FORMULA

a(n) ~ c * 2*sqrt(2/(3*Pi)) * (4/3^(3/4))^(n^2)/n, where c = EllipticTheta[3,0,1/3] = JacobiTheta3(0,1/3) = 1.69145968168171534... if n is even, and c = EllipticTheta[2,0,1/3] = JacobiTheta2(0,1/3) = 1.690611203075214233... if n is odd. - Vaclav Kotesovec, Mar 03 2014

EXAMPLE

L.g.f.: L(x) = 2*x + 6*x^2/2 + 74*x^3/3 + 2942*x^4/4 + 379502*x^5/5 +...

where exponentiation equals the g.f. of A207135:

exp(L(x)) = 1 + 2*x + 5*x^2 + 32*x^3 + 796*x^4 + 77508*x^5 +...

By definition, the initial terms begin: a(0) = 1;

a(1) = C(1,0) + C(1,0);

a(2) = C(4,0) + C(4,1) + C(4,0);

a(3) = C(9,0) + C(9,2) + C(9,2) + C(9,0);

a(4) = C(16,0) + C(16,3) + C(16,4) + C(16,3) + C(16,0);

a(5) = C(25,0) + C(25,4) + C(25,6) + C(25,6) + C(25,4) + C(25,0);

a(6) = C(36,0) + C(36,5) + C(36,8) + C(36,9) + C(36,8) + C(36,5) + C(36,0); ...

which is evaluated as:

a(1) = 1 + 1 = 2;

a(2) = 1 + 4 + 1 = 6;

a(3) = 1 + 36 + 36 + 1 = 74;

a(4) = 1 + 560 + 1820 + 560 + 1 = 2942;

a(5) = 1 + 12650 + 177100 + 177100 + 12650 + 1 = 379502;

a(6) = 1 + 376992 + 30260340 + 94143280 + 30260340 + 376992 + 1 = 155417946; ...

MAPLE

A207136:=n->add(binomial(n^2, k*(n-k)), k=0..n): seq(A207136(n), n=0..15); # Wesley Ivan Hurt, Jun 23 2015

MATHEMATICA

Table[Sum[Binomial[n^2, k*(n-k)], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 03 2014 *)

PROG

(PARI) {a(n)=sum(k=0, n, binomial(n^2, (n-k)*k))}

for(n=0, 20, print1(a(n), ", "))

CROSSREFS

Cf. A207135 (exp), A167009, A228836.

Sequence in context: A061296 A019993 A218058 * A304641 A065410 A000721

Adjacent sequences:  A207133 A207134 A207135 * A207137 A207138 A207139

KEYWORD

nonn,nice,easy

AUTHOR

Paul D. Hanna, Feb 15 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 17 12:09 EST 2020. Contains 331996 sequences. (Running on oeis4.)