login
A207050
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with every 2X3 or 3X2 subblock having exactly one clockwise edge increases
9
81, 150, 150, 441, 270, 441, 1416, 552, 552, 1416, 4371, 1182, 750, 1182, 4371, 13386, 2244, 1272, 1272, 2244, 13386, 41589, 4722, 2094, 2244, 2094, 4722, 41589, 128700, 9582, 3408, 3408, 3408, 3408, 9582, 128700, 397335, 18930, 5850, 4836, 4944, 4836
OFFSET
1,1
COMMENTS
Table starts
.....81...150..441..1416..4371.13386.41589.128700.397335.1229310.3802377
....150...270..552..1182..2244..4722..9582..18930..39348...78804..159042
....441...552..750..1272..2094..3408..5850...9792..15966...26880...45024
...1416..1182.1272..2244..3408..4836..9144..13950..19752...36912...55944
...4371..2244.2094..3408..4944..7584.13752..20208..31158...55920...81936
..13386..4722.3408..4836..7584.11712.19200..30528..48096...78744..125184
..41589..9582.5850..9144.13752.19200.35904..54528..77376..146304..223200
.128700.18930.9792.13950.20208.30528.54528..79104.121344..220032..323328
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) +8*a(n-3) -2*a(n-4) for n>5
k=2: a(n) = 2*a(n-2) +5*a(n-3) -a(n-4) -a(n-5) for n>7
k=3: a(n) = 4*a(n-3) +a(n-4) for n>11
k=4: a(n) = 4*a(n-3) for n>12
k=5: a(n) = 4*a(n-3) for n>13
k=6: a(n) = 4*a(n-3) for n>14
k=7: a(n) = 4*a(n-3) for n>15
apparently a(n) = 4*a(n-3) for k>3 and n>k+8
EXAMPLE
Some solutions for n=4 k=3
..2..1..0..0....2..0..0..0....1..0..0..1....2..1..0..0....1..0..2..2
..2..0..0..0....2..2..0..0....1..0..0..0....2..2..0..0....1..1..2..2
..0..0..0..2....2..2..2..0....1..1..0..0....2..2..2..0....1..1..1..2
..0..0..1..1....1..2..2..2....1..1..1..2....0..2..2..0....0..1..1..1
..1..1..1..1....1..1..2..2....2..1..1..2....0..0..0..0....0..0..1..1
CROSSREFS
Sequence in context: A046374 A153259 A369977 * A206072 A207043 A206065
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Feb 14 2012
STATUS
approved