%I #10 Jun 17 2018 14:37:45
%S 150,270,552,1182,2244,4722,9582,18930,39348,78804,159042,325836,
%T 653826,1328730,2698986,5441712,11061960,22395798,45304764,91960698,
%U 186084846,376987458,764272620,1547133684,3135436986,6352558164,12865282314
%N Number of (n+1) X 3 0..2 arrays with every 2 X 3 or 3 X 2 subblock having exactly one clockwise edge increases.
%C Column 2 of A207050.
%H R. H. Hardin, <a href="/A207044/b207044.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 2*a(n-2) + 5*a(n-3) - a(n-4) - a(n-5) for n>7.
%F Empirical g.f.: 6*x*(25 + 45*x + 42*x^2 - 18*x^3 - 10*x^4 + 3*x^5 + x^6) / (1 - 2*x^2 - 5*x^3 + x^4 + x^5). - _Colin Barker_, Jun 17 2018
%e Some solutions for n=4:
%e 2 2 0 1 2 2 1 0 2 1 2 2 2 0 0 0 1 1 0 1 1
%e 2 0 0 2 2 2 1 1 2 2 2 2 2 2 0 0 1 1 1 1 1
%e 2 0 0 2 2 1 1 1 1 2 2 0 2 2 2 0 0 1 1 1 0
%e 2 2 0 2 0 0 0 1 1 2 0 0 1 2 2 0 0 0 1 2 2
%e 2 2 2 2 0 0 0 0 0 0 0 0 1 1 2 1 0 0 1 2 2
%Y Cf. A207050.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 14 2012