%I #8 May 22 2012 11:43:19
%S 25,625,3025,9450,23400,49925,95900,170300,284475,452425,691075,
%T 1020550,1464450,2050125,2808950,3776600,4993325,6504225,8359525,
%U 10614850,13331500,16576725,20424000,24953300,30251375,36412025,43536375,51733150
%N Number of nX7 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 0 1 vertically
%C Column 7 of A207024
%H R. H. Hardin, <a href="/A207023/b207023.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (55/24)*n^5 + (75/4)*n^4 + (275/8)*n^3 + (75/4)*n^2 - (295/6)*n.
%F Empirical G.f.: 25*x*(1+19*x-14*x^2+7*x^3-2*x^4)/(1-x)^6. [_Colin Barker_, May 22 2012]
%e Some solutions for n=4
%e ..0..0..1..0..1..0..1....0..1..0..0..1..0..0....1..0..0..1..0..1..0
%e ..0..1..0..1..0..0..1....1..0..1..0..1..0..0....0..1..0..0..1..0..0
%e ..0..1..0..1..0..0..1....1..0..1..0..1..0..0....0..1..0..0..1..0..0
%e ..0..1..0..1..0..0..1....1..0..1..0..1..0..0....0..1..0..0..1..0..0
%K nonn
%O 1,1
%A _R. H. Hardin_ Feb 14 2012