OFFSET
1,1
COMMENTS
Phi_k(m) denotes the cyclotomic polynomial numbers Cyclotomic(k,m).
There is a property for Cyclotomic(k,m):
Cyclotomic(k^(j+1),m) = Cyclotomic(k,m^(k^j)).
So actually when k=2^(j+1), j is a positive integer,
Cyclotomic(k,m) = Cyclotomic(2,m^(2^j)) = 1+m^(2^j).
If these cases are excluded from A206942, this sequence is obtained.
This sequence is a subsequence of A206942.
Sequence A059054 is a subsequence of this sequence.
The Mathematica program can generate this sequence to arbitrary boundary maxdata without a user's choice of parameters. The parameter determination part of this program is explained at A206864.
EXAMPLE
a(1) = 3 = Phi(6,2).
5 = Phi(4,2) = Phi(2,4) so excluded.
a(2) = 7 = Phi(3,2).
MATHEMATICA
phiinv[n_, pl_] := Module[{i, p, e, pe, val}, If[pl == {}, Return[If[n == 1, {1}, {}]]]; val = {}; p = Last[pl]; For[e = 0; pe = 1, e == 0 || Mod[n, (p - 1) pe/p] == 0, e++; pe *= p, val = Join[val, pe*phiinv[If[e == 0, n, n*p/pe/(p - 1)], Drop[pl, -1]]]]; Sort[val]]; phiinv[n_] := phiinv[n, Select[1 + Divisors[n], PrimeQ]]; maxdata = 1500; max = Ceiling[(1 + Sqrt[1 + 4*(maxdata - 1)])/4]*2; eb = 2*Floor[(Log[2, maxdata])/2 + 0.5]; While[eg = phiinv[eb]; lu = Length[eg]; lu == 0, eb = eb + 2]; t = Select[Range[eg[[Length[eg]]]], ((EulerPhi[#] <= eb) && ((! IntegerQ[Log[2, #]]) || (# <= 2))) &]; ap = SortBy[t, Cyclotomic[#, 2] &]; an = SortBy[t, Cyclotomic[#, -2] &]; a = {}; Do[i = 2; While[i++; cc = Cyclotomic[ap[[i]], m]; cc <= maxdata,
a = Append[a, cc]]; i = 2; While[i++; cc = Cyclotomic[an[[i]], -m]; cc <= maxdata, a = Append[a, cc]], {m, 2, max}]; Union[a]
CROSSREFS
KEYWORD
nonn
AUTHOR
Lei Zhou, Feb 13 2012
STATUS
approved