login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206924 Number of contiguous palindromic bit patterns in the n-th binary palindrome. 10
1, 1, 3, 4, 6, 6, 10, 9, 9, 9, 15, 13, 11, 11, 21, 18, 14, 16, 14, 14, 14, 16, 28, 24, 16, 16, 18, 18, 18, 18, 36, 31, 21, 19, 19, 19, 25, 21, 23, 23, 19, 21, 21, 21, 21, 25, 45, 39, 23, 25, 23, 23, 23, 21, 29, 29, 23, 21, 25, 25, 25, 27, 55, 48, 30, 26, 26 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
For a given number of places m a binary palindrome has at least 2*(m-1) + floor((m-3)/2) palindromic substrings. To a certain extent, this number indicates the minimal possible grade of symmetry (cf. A210926 and A217099).
LINKS
FORMULA
a(n) <= m*(m+1)/2, where m = 1+floor(log_2(A006995(n)), equality holds if n+1 is a power of 2 or n+1 is 3-times a power of 2.
a(n) >= 2*floor(log_2(A006995(n))).
a(n) = A206925(A006995(n)).
a(n) <= ((floor(log_2(n)) + floor(log_2(n/3)) + 3) * (floor(log_2(n)) + floor(log_2(n/3))) + 2)/2.
a(n) >= 2*(floor(log_2(n)) + floor(log_2(n/3))), n>1. Equality holds for n=4 and n=6, only.
With m = 1+floor(log_2(A006995(n)), n>1:
a(n) >= 2(m-1) + floor((m-3)/2). Equality holds infinitely often for those n>3 for which A006995(n) is a term of A217099.
a(n) >= (5m - 8)/2. Equality holds infinitely often for those n>3 for which A006995(n) is a term of A217099 with an even number of digits.
a(n) >= 3*floor(log_2(n)) + 2*floor(log_2(n/3)) - 2. Equality holds infinitely often for those n>3 for which A006995(n) is a term of A217099
a(n) >= |3*floor(log_2(n)) + 2*floor(log_2(n/3)) - 2|, n>1.
Asymptotic behavior:
a(n) = O(log(n)^2).
lim sup a(n)/log_2(n)^2 = 2, for n -> infinity.
lim inf a(n)/log_2(n) = 5, for n -> infinity.
lim inf (a(n) - 3*floor(log_2(n)) - 2*floor(log_2(n/3))) = -2, for n -> infinity.
lim inf a(n)/log_2(A006995(n)) = 5/2, for n -> infinity.
lim inf (2a(n) - 5*floor(log_2(A006995(n)))) = -3, for n -> infinity.
EXAMPLE
a(1) = a(2) = 1, since A006995(1) = 0 and A006995(2) = 1;
a(3) = 3, since A006995(3)=3=11_2 and so there are the following 3 palindromic bit patterns the left 1, the right 1 and 11;
a(10) = 9, since A006995(10) = 27 = 11011_2 and so there are the following 9 palindromic bit patterns: 1, 1, 0, 1, 1, 11, 11, 101, 11011.
MATHEMATICA
palQ[w_] := w == Reverse@w; subs[w_] := Flatten[Table[Take[w, {j, i}], {i, Length@w}, {j, i}], 1]; seq={}; k=0; While[Length@seq < 100, u = IntegerDigits[k++, 2]; If[palQ@u, AppendTo[seq, Length@Select[subs@u, palQ]]]]; seq (* Giovanni Resta, Feb 13 2013 *)
PROG
(Smalltalk)
"Calculates a(n)"
CROSSREFS
Sequence in context: A023830 A063649 A053158 * A185443 A275258 A230593
KEYWORD
nonn,base
AUTHOR
Hieronymus Fischer, Mar 12 2012; additional formulas Jan 23 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 18:16 EDT 2024. Contains 371916 sequences. (Running on oeis4.)