%I #7 Oct 26 2016 15:00:26
%S 4,16,16,62,256,62,241,3844,3844,241,936,58081,205518,58081,936,3636,
%T 876096,11091161,11086238,876096,3636,14124,13220496,598618182,
%U 2152805235,594138770,13220496,14124,54865,199487376,32326073197
%N T(n,k) = Number of n X k 0..3 arrays avoiding the pattern z-2 z-1 z in any row, column, nw-to-se diagonal or ne-to-sw antidiagonal.
%C Table starts
%C .....4.........16.............62.................241.....................936
%C ....16........256...........3844...............58081..................876096
%C ....62.......3844.........205518............11091161...............598618182
%C ...241......58081.......11086238..........2152805235............418964575189
%C ...936.....876096......594138770........413843625776.........289315497297232
%C ..3636...13220496....31871929292......79716622309437......200394014933364651
%C .14124..199487376..1709151563122...15348900754966668...138717281035824236746
%C .54865.3010168225.91660941819721.2955760887154751440.96044763651330733440061
%H R. H. Hardin, <a href="/A206838/b206838.txt">Table of n, a(n) for n = 1..84</a>
%e Some solutions for n=5 k=3
%e ..0..2..1....0..0..1....0..1..0....1..1..3....1..1..3....3..0..1....1..0..0
%e ..0..1..0....2..0..3....3..2..1....1..0..0....0..1..0....0..0..3....0..0..3
%e ..2..2..1....3..0..1....1..0..0....1..0..2....0..1..0....2..3..1....1..2..1
%e ..0..0..1....0..1..3....3..1..3....3..2..1....0..1..1....1..2..0....0..1..3
%e ..0..1..0....1..1..0....0..1..0....1..0..0....3..3..0....1..0..0....1..3..3
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Feb 13 2012