login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206814 Position of 5^n in joint ranking of {2^i}, {3^j}, {5^k}. 3
4, 8, 13, 18, 23, 27, 33, 37, 42, 47, 52, 56, 62, 66, 70, 76, 80, 85, 90, 95, 99, 105, 109, 114, 119, 124, 128, 134, 138, 142, 147, 152, 157, 161, 167, 171, 176, 181, 186, 190, 196, 200, 204, 210, 214, 219, 224, 229, 233, 239, 243, 248, 253, 258, 262 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The exponents i,j,k range through the set N of positive integers, so that the position sequences (A206812 for 2^n, A206813 for 3^n, A206814 for 5^n) partition N.

LINKS

Table of n, a(n) for n=1..55.

FORMULA

A205812(n) = n + [n*log(base 3)(2)] + [n*log(base 5)(2)],

A205813(n) = n + [n*log(base 2)(3)] + [n*log(base 5)(3)],

A205814(n) = n + [n*log(base 2)(5)] + [n*log(base 3)(5)],

where []=floor.

EXAMPLE

The joint ranking begins with 2,3,4,5,8,9,16,25,27,32,64,81,125,128,243,256, so that

A205812=(1,3,5,7,10,11,14,...)

A205813=(2,6,9,12,15,...)

A205814=(4,8,13,18,23,...)

MATHEMATICA

f[1, n_] := 2^n; f[2, n_] := 3^n;

f[3, n_] := 5^n; z = 1000;

d[n_, b_, c_] := Floor[n*Log[b, c]];

t[k_] := Table[f[k, n], {n, 1, z}];

t = Sort[Union[t[1], t[2], t[3]]];

p[k_, n_] := Position[t, f[k, n]];

Flatten[Table[p[1, n], {n, 1, z/8}]] (* A206812 *)

Table[n + d[n, 3, 2] + d[n, 5, 2],

  {n, 1, 50}]                        (* A206812 *)

Flatten[Table[p[2, n], {n, 1, z/8}]] (* A206813 *)

Table[n + d[n, 2, 3] + d[n, 5, 3],

  {n, 1, 50}]                        (* A206813 *)

Flatten[Table[p[3, n], {n, 1, z/8}]] (* A206814 *)

Table[n + d[n, 2, 5] + d[n, 3, 5],

  {n, 1, 50}]                        (* A206814 *)

CROSSREFS

Cf. A206805, A206812, A206813.

Sequence in context: A127264 A189370 A190054 * A130236 A198464 A034856

Adjacent sequences:  A206811 A206812 A206813 * A206815 A206816 A206817

KEYWORD

nonn

AUTHOR

Clark Kimberling, Feb 17 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 03:42 EST 2016. Contains 278993 sequences.