login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206812 Position of 2^n in joint ranking of {2^i}, {3^j}, {5^k}. 4
1, 3, 5, 7, 10, 11, 14, 16, 17, 20, 21, 24, 26, 28, 30, 32, 34, 36, 38, 40, 43, 44, 46, 49, 50, 53, 55, 57, 59, 60, 63, 65, 67, 69, 72, 73, 75, 77, 79, 82, 83, 86, 88, 89, 92, 94, 96, 98, 100, 102, 104, 106, 108, 111, 112, 115, 116, 118, 121, 122, 125, 127, 129 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The exponents i,j,k range through the set N of positive integers, so that the position sequences (A206812 for 2^n, A206813 for 3^n, A206814 for 5^n) partition N.

LINKS

Table of n, a(n) for n=1..63.

FORMULA

A205812(n) = n + [n*log(base 3)(2)] + [n*log(base 5)(2)],

A205813(n) = n + [n*log(base 2)(3)] + [n*log(base 5)(3)],

A205814(n) = n + [n*log(base 2)(5)] + [n*log(base 3)(5)],

where []=floor.

EXAMPLE

The joint ranking begins with 2,3,4,5,8,9,16,25,27,32,64,81,125,128,243,256, so that

A205812=(1,3,5,7,10,11,...)

A205813=(2,6,9,12,15,...)

A205814=(4,8,13,18,23,...)

MATHEMATICA

f[1, n_] := 2^n; f[2, n_] := 3^n;

f[3, n_] := 5^n; z = 1000;

d[n_, b_, c_] := Floor[n*Log[b, c]];

t[k_] := Table[f[k, n], {n, 1, z}];

t = Sort[Union[t[1], t[2], t[3]]];

p[k_, n_] := Position[t, f[k, n]];

Flatten[Table[p[1, n], {n, 1, z/8}]] (* A206812 *)

Table[n + d[n, 3, 2] + d[n, 5, 2],

  {n, 1, 50}]                        (* A206812 *)

Flatten[Table[p[2, n], {n, 1, z/8}]] (* A206813 *)

Table[n + d[n, 2, 3] + d[n, 5, 3],

  {n, 1, 50}]                        (* A206813 *)

Flatten[Table[p[3, n], {n, 1, z/8}]] (* A206814 *)

Table[n + d[n, 2, 5] + d[n, 3, 5],

  {n, 1, 50}]                        (* A206814 *)

CROSSREFS

Cf. A206805, A206813, A206814.

Sequence in context: A189171 A189220 A189009 * A189372 A108052 A046868

Adjacent sequences:  A206809 A206810 A206811 * A206813 A206814 A206815

KEYWORD

nonn

AUTHOR

Clark Kimberling, Feb 17 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 00:45 EST 2016. Contains 278959 sequences.