login
Sum_{0<j<k<=n} P(k)-P(j), where P(j)=A065091(j) is the j-th odd prime.
5

%I #14 Apr 19 2015 00:16:47

%S 2,8,26,52,98,156,242,376,528,740,996,1276,1608,2024,2530,3068,3708,

%T 4420,5170,6040,6994,8080,9350,10716,12132,13652,15226,16912,19004,

%U 21216,23614,26076,28868,31728,34798,38084,41518,45180,49076

%N Sum_{0<j<k<=n} P(k)-P(j), where P(j)=A065091(j) is the j-th odd prime.

%C Partial sums of A185382.

%H Danny Rorabaugh, <a href="/A206803/b206803.txt">Table of n, a(n) for n = 2..10000</a>

%t s[k_] := Prime[k + 1]; t[1] = 0;

%t p[n_] := Sum[s[k], {k, 1, n}];

%t c[n_] := n*s[n] - p[n]

%t t[n_] := t[n - 1] + (n - 1) s[n] - p[n - 1]

%t Table[c[n], {n, 2, 100}] (* A185382 *)

%t %/2 (* A206802 *)

%t Flatten[Table[t[n], {n, 2, 40}]] (* A206803 *)

%t %/2 (* A206804 *)

%o (Sage) [sum([sum([nth_prime(k+1)-nth_prime(j+1) for j in range(1,k)]) for k in range(2,n+1)]) for n in range(2,41)] # _Danny Rorabaugh_, Apr 18 2015

%Y Cf. A065091, A185382, A206804, A206817.

%K nonn

%O 2,1

%A _Clark Kimberling_, Feb 13 2012