login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206776 a(n) = 3*a(n-1) + 2*a(n-2) for n>1, a(0)=2, a(1)=3. 3
2, 3, 13, 45, 161, 573, 2041, 7269, 25889, 92205, 328393, 1169589, 4165553, 14835837, 52838617, 188187525, 670239809, 2387094477, 8501763049, 30279478101, 107841960401, 384084837405, 1367938433017, 4871984973861, 17351831787617, 61799465310573 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

This is the Lucas sequence V(3,-2).

Inverse binomial transform of this sequence is A072265.

Is a(n)+1 = A124805(n) for n>0?

LINKS

Bruno Berselli, Table of n, a(n) for n = 0..200

Wikipedia, Lucas sequence: Specific names.

Index entries for linear recurrences with constant coefficients, signature (3,2).

FORMULA

G.f.: (2-3*x)/(1-3*x-2*x^2).

a(n) = ((3-sqrt(17))^n+(3+sqrt(17))^n)/2^n.

a(n) = [x^n] ( (1 + 3*x + sqrt(1 + 6*x + 17*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015

a(n) = (-2)^n * a(-n) for all n in Z. - Michael Somos, Oct 13 2016

If c = (3 + sqrt(17))/2, then c^n = (a(n) + sqrt(17)*A007482(n-1)) / 2. - Michael Somos, Oct 13 2016

EXAMPLE

G.f. = 2 + 3*x + 13*x^2 + 45*x^3 + 161*x^4 + 573*x^5 + 2041*x^6 + 7269*x^7 + ...

MATHEMATICA

RecurrenceTable[{a[n] == 3 a[n - 1] + 2 a[n - 2], a[0] == 2, a[1] == 3}, a[n], {n, 25}]

LinearRecurrence[{3, 2}, {2, 3}, 30] (* Harvey P. Dale, Apr 29 2014 *)

a[ n_] := If[ n < 0, (-2)^n a[ -n], ((3 + Sqrt[17])/2)^n + ((3 - Sqrt[17])/2)^n // Expand]; (* Michael Somos, Oct 13 2016 *)

a[ n_] := If[ n < 0, (-2)^n a[ -n], Boole[n == 0] + SeriesCoefficient[ ((1 + 3*x + Sqrt[1 + 6*x + 17*x^2])/2)^n, {x, 0, n}]]; (* Michael Somos, Oct 13 2016 *)

PROG

(MAGMA) [n le 1 select n+2 else 3*Self(n)+2*Self(n-1): n in [0..25]];

(Maxima) a[0]:2$ a[1]:3$ a[n]:=3*a[n-1]+2*a[n-2]$ makelist(a[n], n, 0, 25);

(PARI) Vec((2-3*x)/(1-3*x-2*x^2) + O(x^30)) \\ Michel Marcus, Jun 26 2015

(PARI) {a(n) = 2 * real(( (3 + quadgen(68)) / 2 )^n)}; /* Michael Somos, Oct 13 2016 */

(PARI) {a(n) = my(w = quadgen(-8)); simplify(w^n * subst(2 * polchebyshev(n), x, -3/4*w))}; /* Michael Somos, Oct 13 2016 */

CROSSREFS

Cf. A189736 (same recurrence but with initial values reversed).

Cf. A007482.

Sequence in context: A235626 A164133 A226938 * A275556 A214888 A203985

Adjacent sequences:  A206773 A206774 A206775 * A206777 A206778 A206779

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Jan 10 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 17:46 EST 2016. Contains 278985 sequences.