login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206776 a(n) = 3*a(n-1) + 2*a(n-2) for n>1, a(0)=2, a(1)=3. 2
2, 3, 13, 45, 161, 573, 2041, 7269, 25889, 92205, 328393, 1169589, 4165553, 14835837, 52838617, 188187525, 670239809, 2387094477, 8501763049, 30279478101, 107841960401, 384084837405, 1367938433017, 4871984973861, 17351831787617, 61799465310573 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

This is the Lucas sequence V(3,-2).

Inverse binomial transform of this sequence is A072265.

Is a(n)+1 = A124805(n) for n>0?

LINKS

Bruno Berselli, Table of n, a(n) for n = 0..200

Wikipedia, Lucas sequence: Specific names.

Index to sequences with linear recurrences with constant coefficients, signature (3,2).

FORMULA

G.f.: (2-3*x)/(1-3*x-2*x^2).

a(n) = ((3-sqrt(17))^n+(3+sqrt(17))^n)/2^n.

MATHEMATICA

RecurrenceTable[{a[n] == 3 a[n - 1] + 2 a[n - 2], a[0] == 2, a[1] == 3}, a[n], {n, 25}]

LinearRecurrence[{3, 2}, {2, 3}, 30] (* Harvey P. Dale, Apr 29 2014 *)

PROG

(MAGMA) [n le 1 select n+2 else 3*Self(n)+2*Self(n-1): n in [0..25]];

(Maxima) a[0]:2$ a[1]:3$ a[n]:=3*a[n-1]+2*a[n-2]$ makelist(a[n], n, 0, 25);

CROSSREFS

Cf. A189736 (same recurrence but with initial values reversed).

Sequence in context: A235626 A164133 A226938 * A214888 A203985 A164511

Adjacent sequences:  A206773 A206774 A206775 * A206777 A206778 A206779

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Jan 10 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 24 07:22 EST 2014. Contains 249872 sequences.