login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206776 a(n) = 3*a(n-1) + 2*a(n-2) for n>1, a(0)=2, a(1)=3. 4
2, 3, 13, 45, 161, 573, 2041, 7269, 25889, 92205, 328393, 1169589, 4165553, 14835837, 52838617, 188187525, 670239809, 2387094477, 8501763049, 30279478101, 107841960401, 384084837405, 1367938433017, 4871984973861, 17351831787617, 61799465310573 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

This is the Lucas sequence V(3,-2).

Inverse binomial transform of this sequence is A072265.

Is a(n)+1 = A124805(n) for n>0?

LINKS

Bruno Berselli, Table of n, a(n) for n = 0..200

Wikipedia, Lucas sequence: Specific names.

Index entries for linear recurrences with constant coefficients, signature (3,2).

FORMULA

G.f.: (2-3*x)/(1-3*x-2*x^2).

a(n) = ((3-sqrt(17))^n+(3+sqrt(17))^n)/2^n.

a(n) = [x^n] ( (1 + 3*x + sqrt(1 + 6*x + 17*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015

a(n) = (-2)^n * a(-n) for all n in Z. - Michael Somos, Oct 13 2016

If c = (3 + sqrt(17))/2, then c^n = (a(n) + sqrt(17)*A007482(n-1)) / 2. - Michael Somos, Oct 13 2016

EXAMPLE

G.f. = 2 + 3*x + 13*x^2 + 45*x^3 + 161*x^4 + 573*x^5 + 2041*x^6 + 7269*x^7 + ...

MATHEMATICA

RecurrenceTable[{a[n] == 3 a[n - 1] + 2 a[n - 2], a[0] == 2, a[1] == 3}, a[n], {n, 25}]

LinearRecurrence[{3, 2}, {2, 3}, 30] (* Harvey P. Dale, Apr 29 2014 *)

a[ n_] := If[ n < 0, (-2)^n a[ -n], ((3 + Sqrt[17])/2)^n + ((3 - Sqrt[17])/2)^n // Expand]; (* Michael Somos, Oct 13 2016 *)

a[ n_] := If[ n < 0, (-2)^n a[ -n], Boole[n == 0] + SeriesCoefficient[ ((1 + 3*x + Sqrt[1 + 6*x + 17*x^2])/2)^n, {x, 0, n}]]; (* Michael Somos, Oct 13 2016 *)

PROG

(MAGMA) [n le 1 select n+2 else 3*Self(n)+2*Self(n-1): n in [0..25]];

(Maxima) a[0]:2$ a[1]:3$ a[n]:=3*a[n-1]+2*a[n-2]$ makelist(a[n], n, 0, 25);

(PARI) Vec((2-3*x)/(1-3*x-2*x^2) + O(x^30)) \\ Michel Marcus, Jun 26 2015

(PARI) {a(n) = 2 * real(( (3 + quadgen(68)) / 2 )^n)}; /* Michael Somos, Oct 13 2016 */

(PARI) {a(n) = my(w = quadgen(-8)); simplify(w^n * subst(2 * polchebyshev(n), x, -3/4*w))}; /* Michael Somos, Oct 13 2016 */

CROSSREFS

Cf. A189736 (same recurrence but with initial values reversed).

Cf. A007482.

Sequence in context: A235626 A164133 A226938 * A275556 A214888 A203985

Adjacent sequences:  A206773 A206774 A206775 * A206777 A206778 A206779

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Jan 10 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 25 08:31 EDT 2017. Contains 287015 sequences.