The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206776 a(n) = 3*a(n-1) + 2*a(n-2) for n>1, a(0)=2, a(1)=3. 7
 2, 3, 13, 45, 161, 573, 2041, 7269, 25889, 92205, 328393, 1169589, 4165553, 14835837, 52838617, 188187525, 670239809, 2387094477, 8501763049, 30279478101, 107841960401, 384084837405, 1367938433017, 4871984973861, 17351831787617, 61799465310573 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This is the Lucas sequence V(3,-2). Inverse binomial transform of this sequence is A072265. Is a(n)+1 = A124805(n) for n>0? REFERENCES Ronald L. Graham, Donald E. Knuth, Oren Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, 1994. Exercise 7.49(c), pages 379, 573. LINKS Bruno Berselli, Table of n, a(n) for n = 0..200 Wikipedia, Lucas sequence: Specific names. Index entries for linear recurrences with constant coefficients, signature (3,2). FORMULA G.f.: (2-3*x)/(1-3*x-2*x^2). a(n) = ((3-sqrt(17))^n+(3+sqrt(17))^n)/2^n. a(n) = [x^n] ( (1 + 3*x + sqrt(1 + 6*x + 17*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015 a(n) = (-2)^n * a(-n) for all n in Z. - Michael Somos, Oct 13 2016 If c = (3 + sqrt(17))/2, then c^n = (a(n) + sqrt(17)*A007482(n-1)) / 2. - Michael Somos, Oct 13 2016 E.g.f.: 2*exp(3*x/2)*cosh(sqrt(17)*x/2). - Stefano Spezia, Oct 21 2022 EXAMPLE G.f. = 2 + 3*x + 13*x^2 + 45*x^3 + 161*x^4 + 573*x^5 + 2041*x^6 + 7269*x^7 + ... MATHEMATICA RecurrenceTable[{a[n] == 3 a[n - 1] + 2 a[n - 2], a[0] == 2, a[1] == 3}, a[n], {n, 25}] LinearRecurrence[{3, 2}, {2, 3}, 30] (* Harvey P. Dale, Apr 29 2014 *) a[ n_] := If[ n < 0, (-2)^n a[ -n], ((3 + Sqrt[17])/2)^n + ((3 - Sqrt[17])/2)^n // Expand]; (* Michael Somos, Oct 13 2016 *) a[ n_] := If[ n < 0, (-2)^n a[ -n], Boole[n == 0] + SeriesCoefficient[ ((1 + 3*x + Sqrt[1 + 6*x + 17*x^2])/2)^n, {x, 0, n}]]; (* Michael Somos, Oct 13 2016 *) PROG (Magma) [n le 1 select n+2 else 3*Self(n)+2*Self(n-1): n in [0..25]]; (Maxima) a[0]:2\$ a[1]:3\$ a[n]:=3*a[n-1]+2*a[n-2]\$ makelist(a[n], n, 0, 25); (PARI) Vec((2-3*x)/(1-3*x-2*x^2) + O(x^30)) \\ Michel Marcus, Jun 26 2015 (PARI) {a(n) = 2 * real(( (3 + quadgen(68)) / 2 )^n)}; /* Michael Somos, Oct 13 2016 */ (PARI) {a(n) = my(w = quadgen(-8)); simplify(w^n * subst(2 * polchebyshev(n), x, -3/4*w))}; /* Michael Somos, Oct 13 2016 */ (PARI) for(n=0, 25, print1(round(((3+sqrt(17))/2)^n+((3-sqrt(17))/2)^n), ", ")) \\ Hugo Pfoertner, Nov 19 2018 CROSSREFS Cf. A189736 (same recurrence but with initial values reversed). Cf. A007482, A072265, A124805. Sequence in context: A164133 A226938 A301395 * A275556 A214888 A203985 Adjacent sequences:  A206773 A206774 A206775 * A206777 A206778 A206779 KEYWORD nonn,easy AUTHOR Bruno Berselli, Jan 10 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 07:48 EST 2022. Contains 358353 sequences. (Running on oeis4.)