This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206772 Table T(n,k)=max{4*n+k-4,n+4*k-4} n, k > 0, read by antidiagonals. 3
 1, 5, 5, 9, 6, 9, 13, 10, 10, 13, 17, 14, 11, 14, 17, 21, 18, 15, 15, 18, 21, 25, 22, 19, 16, 19, 22, 25, 29, 26, 23, 20, 20, 23, 26, 29, 33, 30, 27, 24, 21, 24, 27, 30, 33, 37, 34, 31, 28, 25, 25, 28, 31, 34, 37, 41, 38, 35, 32, 29, 26, 29, 32, 35, 38, 41, 45 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS In general, let m be natural number. Table T(n,k)=max{m*n+k-m,n+m*k-m}. For m=1 the result is A002024, for m=2 the result is A204004, for m=3  the result is A204008. This sequence is result for m=4. LINKS Boris Putievskiy, Rows n = 1..140 of triangle, flattened Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO] FORMULA For the general case a(n) = m*A002024(n) + (m-1)*max{-A002260(n),-A004736(n)}. a(n) = m*(t+1) + (m-1)*max{t*(t+1)/2-n,n-(t*t+3*t+4)/2} where t=floor((-1+sqrt(8*n-7))/2). For m=4 a(n) = 4*(t+1) + 3*max{t*(t+1)/2-n,n-(t*t+3*t+4)/2} where t=floor((-1+sqrt(8*n-7))/2). EXAMPLE The start of the sequence as table for general case: 1........m+1..2*m+1..3*m+1..4*m+1..5*m+1..6*m+1 ... m+1......m+2..2*m+2..3*m+2..4*m+2..5*m+2..6*m+2 ... 2*m+1..2*m+2..2*m+3..3*m+3..4*m+3..5*m+3..6*m+3 ... 3*m+1..3*m+2..3*m+3..3*m+4..4*m+4..5*m+4..6*m+4 ... 4*m+1..4*m+2..4*m+3..4*m+4..4*m+5..5*m+5..6*m+5 ... 5*m+1..5*m+2..5*m+3..5*m+4..5*m+5..5*m+6..6*m+6 ... 6*m+1..6*m+2..6*m+3..6*m+4..6*m+5..6*m+6..6*m+7 ... . . . The start of the sequence as triangle array read by rows for general case: 1; m+1,     m+1; 2*m+1,   m+2, 2*m+1; 3*m+1, 2*m+2, 2*m+2, 3*m+1; 4*m+1, 3*m+2, 2*m+3, 3*m+2, 4*m+1; 5*m+1, 4*m+2, 3*m+3, 2*m+4, 3*m+3, 4*m+2; 5*m+1; 6*m+1, 5*m+2, 4*m+3, 3*m+4, 2*m+5, 3*m+4, 4*m+3; 5*m+2, 6*m+1; . . . Row number r contains r numbers: r*m+1, (r-1)*m+2, ... (r-1)*m+2, r*m+1. PROG (Python) t=int((math.sqrt(8*n-7)-1)/2) result=4*(t+1)+3*max(t*(t+1)/2-n, n-(t*t+3*t+4)/2) CROSSREFS Cf. A002024, A204004, A204008, A002260, A004736. Sequence in context: A046600 A030798 A021951 * A200679 A124175 A168277 Adjacent sequences:  A206769 A206770 A206771 * A206773 A206774 A206775 KEYWORD nonn,tabl AUTHOR Boris Putievskiy, Jan 15 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 13:32 EDT 2019. Contains 328093 sequences. (Running on oeis4.)