This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206766 a(n) = Sum_{k=1..n} binomial(n,k) * sigma(n,k) * 3^(n-k). 1
 1, 23, 226, 3039, 33306, 594902, 10012010, 220553599, 5170061143, 138942811678, 4049569009674, 130045043225838, 4503599691290714, 168477832912220134, 6746676272050878036, 288487396687082933759, 13107200000016921588858, 630907565930072760920429 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Here sigma(n,k) equals the sum of the k-th powers of the divisors of n. LINKS FORMULA a(n) = Sum_{d|n} ((d+3)^n - 3^n). Logarithmic derivative of A206765. L.g.f.: Sum_{n>=1} (1/n) * log( (1 - 3^n*x^n) / (1 - (n+3)^n*x^n) ). EXAMPLE L.g.f.: L(x) = x + 23*x^2/2 + 226*x^3/3 + 3039*x^4/4 + 33306*x^5/5 +... Exponentiation yields the g.f. of A206765: exp(L(x) = 1 + x + 12*x^2 + 87*x^3 + 907*x^4 + 8393*x^5 + 118932*x^6 +... Illustration of terms. a(2) = 2*sigma(2,1)*3 + 1*sigma(2,2)*1 = 2*3*3 + 1*5*1 = 23; a(3) = 3*sigma(3,1)*9 + 3*sigma(3,2)*3 + 1*sigma(3,3)*1 = 3*4*9 + 3*10*3 + 1*28*1 = 226; a(4) = 4*sigma(4,1)*27 + 6*sigma(4,2)*9 + 4*sigma(4,3)*3 + 1*sigma(4,4)*1 = 4*7*27 + 6*21*9 + 4*73*3 + 1*273*1 = 3039. PROG (PARI) {a(n)=sum(k=1, n, binomial(n, k)*sigma(n, k)*3^(n-k))} (PARI) {a(n)=n*polcoeff(sum(k=1, n, (1/k)*log((1-3^k*x^k)/(1-(k+3)^k*x^k +x*O(x^n)))), n)} for(n=1, 21, print1(a(n), ", ")) CROSSREFS Cf. A206765 (exp), A205815, A205812. Sequence in context: A126544 A272796 A285552 * A142490 A051819 A179631 Adjacent sequences:  A206763 A206764 A206765 * A206767 A206768 A206769 KEYWORD nonn AUTHOR Paul D. Hanna, Feb 12 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 06:40 EST 2019. Contains 320371 sequences. (Running on oeis4.)