login
A206742
G.f.: 1/(1 - x/(1 - x^3/(1 - x^4/(1 - x^7/(1 - x^11/(1 - x^18/(1 -...- x^Lucas(n)/(1 -...)))))))), a continued fraction.
5
1, 1, 1, 1, 2, 3, 4, 6, 10, 15, 22, 34, 53, 80, 121, 187, 287, 436, 666, 1023, 1564, 2386, 3652, 5593, 8548, 13065, 19995, 30590, 46767, 71524, 109425, 167361, 255934, 391466, 598795, 915805, 1400649, 2142358, 3276767, 5011632, 7665186, 11724011, 17931702, 27426003
OFFSET
0,5
LINKS
FORMULA
a(n) ~ c * d^n, where d = 1.52948673740109160123259225872298170871226757805081837... and c = 0.3181991399535991335364627230448471420031275308618... - Vaclav Kotesovec, Aug 25 2017
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 6*x^7 + 10*x^8 +...
MATHEMATICA
nmax = 50; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[x^(LucasL[Range[nmax + 1]])]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2017 *)
PROG
(PARI) {Lucas(n)=polcoeff(x*(1+2*x)/(1-x-x^2+x*O(x^n)), n)}
{a(n)=local(CF=1+x*O(x^n), M=ceil(log(n+1)/log(1.6))); for(k=0, M, CF=1/(1-x^Lucas(M-k+1)*CF)); polcoeff(CF, n, x)}
for(n=0, 55, print1(a(n), ", "))
CROSSREFS
Cf. A206741.
Sequence in context: A374763 A147788 A104977 * A221992 A221993 A221994
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 12 2012
STATUS
approved