This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206725 G.f. satisfies: A(x) = Sum_{n>=0} x^n * Product_{k=0..n-1} A(u(n)^k*x), where u(n) = exp(2*Pi*I/n) is an n-th root of unity. 1
 1, 1, 2, 3, 7, 8, 25, 26, 95, 143, 384, 385, 2030, 2031, 7519, 13114, 45435, 45436, 215811, 215812, 1081077, 1652010, 5091830, 5091831, 31815975, 34705543, 131929631, 218433121, 833547968, 833547969, 4227406719, 4227406720, 22363902821, 33736949254, 109742467470 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA G.f. satisfies: A(x) = Sum_{n>=0} x^n * exp( Sum_{k>=1} x^(n*k)*L(n*k)/k ) where L(n) is defined by A(x) = exp( Sum_{n>=1} x^n*L(n)/n ). EXAMPLE G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 7*x^4 + 8*x^5 + 25*x^6 + 26*x^7 +... such that the g.f. satisfies: A(x) = 1 + x*A(x) + x^2*A(x)*A(-x) + x^3*A(x)*A(u(3)*x)*A(u(3)^2*x) + x^4*A(x)*A(I*x)*A(-x)*A(-I*x) + x^5*A(x)*A(u(5)*x)*A(u(5)^2*x)*A(u(5)^3*x)*A(u(5)^4*x) +... where u(n) = exp(2*Pi*I/n) is an n-th root of unity. The coefficients in P(n) = Product_{k=0..n-1} A(u(n)^k*x) begin: P(2) = A(x)*A(-x) = 1 + 3*x^2 + 12*x^4 + 53*x^6 + 239*x^8 + 992*x^10 +... P(3) = 1 + 4*x^3 + 47*x^6 + 270*x^9 + 4912*x^12 + 34610*x^15 +... P(4) = 1 + 15*x^4 + 304*x^8 + 7989*x^12 + 191611*x^16 + 5101952*x^20 +... P(5) = 1 + x^5 + 682*x^10 + 21723*x^15 + 2889567*x^20 +... P(6) = 1 + 78*x^6 + 9873*x^12 + 1213460*x^18 + 195457508*x^24 +... such that A(x) = 1 + x*A(x) + x^2*P(2) + x^3*P(3) + x^4*P(4) +... PROG (PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1+sum(m=1, n+1, x^m*A*round(prod(k=1, m-1, subst(A, x, exp(2*Pi*I*k/m)*x+x*O(x^n)))))); polcoeff(A, n)} for(n=0, 45, print1(a(n), ", ")) CROSSREFS Cf. A206724. Sequence in context: A029785 A045545 A029790 * A129645 A324481 A112994 Adjacent sequences:  A206722 A206723 A206724 * A206726 A206727 A206728 KEYWORD nonn AUTHOR Paul D. Hanna, Feb 11 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 15:02 EDT 2019. Contains 328019 sequences. (Running on oeis4.)