login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206725 G.f. satisfies: A(x) = Sum_{n>=0} x^n * Product_{k=0..n-1} A(u(n)^k*x), where u(n) = exp(2*Pi*I/n) is an n-th root of unity. 1
1, 1, 2, 3, 7, 8, 25, 26, 95, 143, 384, 385, 2030, 2031, 7519, 13114, 45435, 45436, 215811, 215812, 1081077, 1652010, 5091830, 5091831, 31815975, 34705543, 131929631, 218433121, 833547968, 833547969, 4227406719, 4227406720, 22363902821, 33736949254, 109742467470 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..34.

FORMULA

G.f. satisfies: A(x) = Sum_{n>=0} x^n * exp( Sum_{k>=1} x^(n*k)*L(n*k)/k ) where L(n) is defined by A(x) = exp( Sum_{n>=1} x^n*L(n)/n ).

EXAMPLE

G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 7*x^4 + 8*x^5 + 25*x^6 + 26*x^7 +...

such that the g.f. satisfies:

A(x) = 1 + x*A(x) + x^2*A(x)*A(-x) + x^3*A(x)*A(u(3)*x)*A(u(3)^2*x) + x^4*A(x)*A(I*x)*A(-x)*A(-I*x) + x^5*A(x)*A(u(5)*x)*A(u(5)^2*x)*A(u(5)^3*x)*A(u(5)^4*x) +...

where u(n) = exp(2*Pi*I/n) is an n-th root of unity.

The coefficients in P(n) = Product_{k=0..n-1} A(u(n)^k*x) begin:

P(2) = A(x)*A(-x) = 1 + 3*x^2 + 12*x^4 + 53*x^6 + 239*x^8 + 992*x^10 +...

P(3) = 1 + 4*x^3 + 47*x^6 + 270*x^9 + 4912*x^12 + 34610*x^15 +...

P(4) = 1 + 15*x^4 + 304*x^8 + 7989*x^12 + 191611*x^16 + 5101952*x^20 +...

P(5) = 1 + x^5 + 682*x^10 + 21723*x^15 + 2889567*x^20 +...

P(6) = 1 + 78*x^6 + 9873*x^12 + 1213460*x^18 + 195457508*x^24 +...

such that A(x) = 1 + x*A(x) + x^2*P(2) + x^3*P(3) + x^4*P(4) +...

PROG

(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1+sum(m=1, n+1, x^m*A*round(prod(k=1, m-1, subst(A, x, exp(2*Pi*I*k/m)*x+x*O(x^n)))))); polcoeff(A, n)}

for(n=0, 45, print1(a(n), ", "))

CROSSREFS

Cf. A206724.

Sequence in context: A029785 A045545 A029790 * A129645 A112994 A056036

Adjacent sequences:  A206722 A206723 A206724 * A206726 A206727 A206728

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Feb 11 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 13:38 EST 2016. Contains 278768 sequences.