login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206722 Parameters of Chebyshev function psi. 1
1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 3, 2, 1, 1, 3, 2, 1, 1, 3, 2, 1, 1, 1, 3, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,4

COMMENTS

a(x,n) is the exponent k such that prime(n)^k <= x and x < prime(n)^(k+1).

psi(x) = sum(with p_n <= x, k*log(p_n)), where a(x,n) = k is the unique integer such that p_n^k ≤ x but p_n^(k+1) > x.

The first column is A000523; the second is A048766.

Related to the Firoozbakht’s Conjecture (1982): p_n^(1/n) > p_(n+1)^(1/(n+1)) for all n ≥ 1.

LINKS

Table of n, a(n) for n=2..76.

N. Kanti Sinha, On a new property of primes that leads to a generalization of Cramer's conjecture, arXiv:1010.1399

Wikipedia, Chebyshev function

EXAMPLE

If x = 7, then 2^2, 3^1, 5^1, 7^1 <= x < 2^3, 3^2, 5^2, 7^2, respectively so k = 2, 1, 1, 1, respectively.

The table starts in row x=2 with columns n>=1 as:

1;

1,1;

2,1;

2,1,1;

2,1,1;

2,1,1,1;

3,1,1,1;

3,2,1,1;

3,2,1,1,1;

PROG

(Maxima):

prime(n) := block(

    if n = 1 then

       return(2)

    else

    return(next_prime(prime(n-1)))

)$ /* very slow recursive definition of A000040 */

A206722(x, n) := block(

    local(p),

    p : prime ( n ),

    for k : 0 do (

       if p^(k+1) > x and p^k <= x then

          return(k)

       )

)$

for x : 2 thru 20 do (

    for n : 1 thru 17 do

      sprint(A206722(x, n)),

    newline()

)$ /* R. J. Mathar, Feb 14 2012 */

CROSSREFS

Sequence in context: A096860 A128185 A175244 * A245222 A022300 A105690

Adjacent sequences:  A206719 A206720 A206721 * A206723 A206724 A206725

KEYWORD

nonn,tabf,easy

AUTHOR

John W. Nicholson, Feb 11 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 2 21:20 EST 2016. Contains 278694 sequences.