login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206722 Parameters of Chebyshev function psi. 1
1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 3, 2, 1, 1, 3, 2, 1, 1, 3, 2, 1, 1, 1, 3, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,4

COMMENTS

a(x,n) is the exponent k such that prime(n)^k <= x and x < prime(n)^(k+1).

psi(x) = sum(with p_n <= x, k*log(p_n)), where a(x,n) = k is the unique integer such that p_n^k ≤ x but p_n^(k+1) > x.

The first column is A000523; the second is A048766.

Related to the Firoozbakht’s Conjecture (1982): p_n^(1/n) > p_(n+1)^(1/(n+1)) for all n ≥ 1.

LINKS

Table of n, a(n) for n=2..76.

N. Kanti Sinha, On a new property of primes that leads to a generalization of Cramer's conjecture, arXiv:1010.1399

Wikipedia, Chebyshev function

EXAMPLE

If x = 7, then 2^2, 3^1, 5^1, 7^1 <= x < 2^3, 3^2, 5^2, 7^2, respectively so k = 2, 1, 1, 1, respectively.

The table starts in row x=2 with columns n>=1 as:

1;

1,1;

2,1;

2,1,1;

2,1,1;

2,1,1,1;

3,1,1,1;

3,2,1,1;

3,2,1,1,1;

PROG

(Maxima):

prime(n) := block(

    if n = 1 then

       return(2)

    else

    return(next_prime(prime(n-1)))

)$ /* very slow recursive definition of A000040 */

A206722(x, n) := block(

    local(p),

    p : prime ( n ),

    for k : 0 do (

       if p^(k+1) > x and p^k <= x then

          return(k)

       )

)$

for x : 2 thru 20 do (

    for n : 1 thru 17 do

      sprint(A206722(x, n)),

    newline()

)$ /* R. J. Mathar, Feb 14 2012 */

CROSSREFS

Sequence in context: A096860 A128185 A175244 * A022300 A105690 A214364

Adjacent sequences:  A206719 A206720 A206721 * A206723 A206724 A206725

KEYWORD

nonn,tabf,easy

AUTHOR

John W. Nicholson, Feb 11 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 24 13:03 EDT 2014. Contains 240983 sequences.