The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206708 Numbers k such that sigma(k) = sigma(sigma(k)-k). 4
 6, 28, 220, 284, 496, 1184, 1210, 2620, 2924, 5020, 5564, 6232, 6368, 8128, 10744, 10856, 12285, 14595, 17296, 18416, 63020, 66928, 66992, 67095, 69615, 71145, 76084, 79750, 87633, 88730, 100485, 122265, 122368, 123152, 124155, 139815, 141664, 142310, 153176 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For all k, let s(k) = sigma(k) - k, the aliquot sum function A001065; then this sequence is the set of k such that s(s(k)) = k. - Jeppe Stig Nielsen, Jan 12 2020 LINKS Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 1000 terms from Amiram Eldar) Eric Weisstein's World of Mathematics, Perfect Number Eric Weisstein's World of Mathematics, Amicable Pair Wikipedia, Perfect number Wikipedia, Amicable number FORMULA Equals {A063990} union {A000396} =  (amicable numbers) union (perfect numbers). EXAMPLE 220 is in the sequence because sigma(220) = 504, sigma(504 - 220) = sigma(284) = 504. MAPLE with(numtheory); A206708:=proc(q)  local n; for n from 1 to q do if sigma(n)=sigma(sigma(n)-n) then print(n); fi; od; end: A206708(10^10); # Paolo P. Lava, Mar 26 2013 MATHEMATICA Select[Range[10^6], DivisorSigma[1, #]==DivisorSigma[1, DivisorSigma[1, #]-#]&] PROG (PARI) isok(k) = if (k != 1, my(sk=sigma(k)); sk == sigma(sk-k)); \\ Michel Marcus, Jun 24 2019 (MAGMA) [k:k in [2..154000]|s eq DivisorSigma(1, s-k) where s is DivisorSigma(1, k)]; // Marius A. Burtea, Jan 13 2020 CROSSREFS Cf. A000396 (perfect numbers), A063990 (amicable numbers). Cf. A000203 (sum of divisors), A001065 (sum of proper divisors). Sequence in context: A169723 A052395 A034660 * A336565 A216413 A090898 Adjacent sequences:  A206705 A206706 A206707 * A206709 A206710 A206711 KEYWORD nonn AUTHOR Michel Lagneau, Feb 11 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 15 21:50 EST 2021. Contains 340195 sequences. (Running on oeis4.)