

A206586


Numbers n such that the periodic part of the continued fraction of sqrt(n) has positive even length.


4



3, 6, 7, 8, 11, 12, 14, 15, 18, 19, 20, 21, 22, 23, 24, 27, 28, 30, 31, 32, 33, 34, 35, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 51, 52, 54, 55, 56, 57, 59, 60, 62, 63, 66, 67, 68, 69, 70, 71, 72, 75, 76, 77, 78, 79, 80, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

By making the length positive, we exclude squares. See A206587 for this sequence and the squares. All primes of the form 4k + 3 are here.


LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000
P. J. Rippon and H. Taylor, Even and odd periods in continued fractions of square roots, Fibonacci Quarterly 42, May 2004, pp. 170180.


MATHEMATICA

Select[Range[100], ! IntegerQ[Sqrt[#]] && EvenQ[Length[ContinuedFraction[Sqrt[#]][[2]]]] &]


PROG

(PARI)
cyc(cf) = {
if(#cf==1, return(0)); \\ There is no cycle
my(s=[]);
for(k=2, #cf,
s=concat(s, cf[k]);
if(cf[k]==2*cf[1], return(s)) \\ Cycle found
);
0 \\ Cycle not found
}
select(n>(t=#cyc(contfrac(sqrt(n))))>0 && t%2==0, vector(100, n, n)) \\ Colin Barker, Oct 19 2014


CROSSREFS

Cf. A003814 (period has odd length).
Sequence in context: A047283 A155932 A298980 * A289176 A277851 A047557
Adjacent sequences: A206583 A206584 A206585 * A206587 A206588 A206589


KEYWORD

nonn


AUTHOR

T. D. Noe, Mar 19 2012


STATUS

approved



