login
A206582
The least nonsquare number s having exactly n twos in the periodic part of the continued fraction of sqrt(s).
4
5, 2, 19, 45, 71, 153, 199, 589, 301, 989, 526, 1711, 739, 1633, 631, 3886, 1324, 4897, 2524, 7021, 2374, 4189, 2311, 10033, 3571, 3901, 2326, 8869, 4789, 10873, 6301, 10921, 6451, 11929, 6841, 12709, 7996, 13561, 7351, 19177, 9949, 16969, 12286, 22969, 11341
OFFSET
0,1
MAPLE
V:= Array(0..50): count:= 0:
with(NumberTheory):
for i from 2 while count < 51 do
if issqr(i) then next fi;
cf:= Term(ContinuedFraction(sqrt(i)), periodic);
v:= numboccur(cf[2], 2);
if v <= 50 and V[v] = 0 then
V[v]:= i; count:= count+1;
fi;
od:
convert(V, list); # Robert Israel, May 13 2024
MATHEMATICA
nn = 50; zeros = nn; t = Table[0, {nn}]; k = 2; While[zeros > 0, If[! IntegerQ[Sqrt[k]], cnt = Count[ContinuedFraction[Sqrt[k]][[2]], 2]; If[cnt <= nn && t[[cnt]] == 0, t[[cnt]] = k; zeros--]]; k++]; Join[{5}, t]
CROSSREFS
Cf. A206578 (n ones), A206583 (n threes), A206584 (n fours), A206585 (n fives).
Sequence in context: A356330 A306198 A327316 * A276533 A303685 A189746
KEYWORD
nonn
AUTHOR
T. D. Noe, Mar 19 2012
EXTENSIONS
Corrected by Robert Israel, May 13 2024
STATUS
approved