This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206481 a(n) + a(n+2) = n^3. 2
 0, 1, 1, 7, 26, 57, 99, 159, 244, 353, 485, 647, 846, 1081, 1351, 1663, 2024, 2433, 2889, 3399, 3970, 4601, 5291, 6047, 6876, 7777, 8749, 9799, 10934, 12153, 13455, 14847, 16336, 17921, 19601, 21383, 23274, 25273, 27379, 29599, 31940, 34401, 36981, 39687 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS If the offset were 0, the formula would be: a(0)=0, a(1)=1, for n>=2: a(n) = (n-1)^3 - a(n-2). LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (4,-7,8,-7,4,-1). FORMULA a(n)=(1/2)*((n-3)*n^2-4*cos((Pi*n)/2)+2). - Harvey P. Dale, Sep 14 2012 G.f.: x^2*(1 - 3*x + 10*x^2 - 3*x^3 + x^4)/((1-x)^4*(1+x^2)). - Paul D. Hanna, Sep 14 2012 MATHEMATICA LinearRecurrence[{4, -7, 8, -7, 4, -1}, {0, 1, 1, 7, 26, 57}, 60] RecurrenceTable[{a[1]==0, a[2]==1, a[n]==(n-2)^3-a[n-2]}, a, {n, 50}] (* Harvey P. Dale, Sep 14 2012 *) PROG (Python) prpr = 0 prev = 1 for n in range(1, 77):     print prpr,     curr = n*n*n - prpr    # a(n+1)     prpr = prev     prev = curr CROSSREFS Cf. A144129 (bisection). Sequence in context: A063159 A274268 A059376 * A049453 A231888 A211645 Adjacent sequences:  A206478 A206479 A206480 * A206482 A206483 A206484 KEYWORD nonn,easy AUTHOR Vladimir Joseph Stephan Orlovsky, Feb 08 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.