login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206472 T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with every 2X2 subblock having zero permanent 8

%I

%S 25,121,121,441,1411,441,1849,11025,11025,1849,7225,106891,110889,

%T 106891,7225,29241,958441,1896129,1896129,958441,29241,116281,8963667,

%U 23707161,68352739,23707161,8963667,116281,466489,82609921,356190129,1693734025

%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with every 2X2 subblock having zero permanent

%C Table starts

%C .....25.......121.........441...........1849.............7225

%C ....121......1411.......11025.........106891...........958441

%C ....441.....11025......110889........1896129.........23707161

%C ...1849....106891.....1896129.......68352739.......1693734025

%C ...7225....958441....23707161.....1693734025......61244865529

%C ..29241...8963667...356190129....52552339515....3420616959081

%C .116281..82609921..4803737481..1457044540561..144660587865049

%C .466489.767387611.69030731169.43214597865811.7310031634630729

%H R. H. Hardin, <a href="/A206472/b206472.txt">Table of n, a(n) for n = 1..684</a>

%e Some solutions for n=4 k=3

%e ..0..2..0..2....0..0..0..1....2..0..1..2....2..2..0..0....1..2..0..0

%e ..0..1..0..0....1..0..0..1....1..0..0..0....0..0..0..1....0..0..0..2

%e ..0..2..0..1....0..0..0..0....1..0..2..0....2..0..0..0....1..0..0..0

%e ..0..0..0..0....1..2..0..1....1..0..0..0....2..0..0..1....0..0..1..0

%e ..0..2..2..2....0..0..0..1....0..0..2..1....2..0..0..2....1..0..2..0

%Y Column 1 is A139818(n+3)

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_ Feb 08 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 4 16:53 EDT 2020. Contains 334828 sequences. (Running on oeis4.)