%I #25 Apr 11 2024 16:30:23
%S 11,8,19,27,46,73,119,192,311,503,814,1317,2131,3448,5579,9027,14606,
%T 23633,38239,61872,100111,161983,262094,424077,686171,1110248,1796419,
%U 2906667,4703086,7609753,12312839,19922592,32235431,52158023,84393454,136551477
%N Fibonacci sequence beginning 11, 8.
%H Vincenzo Librandi, <a href="/A206420/b206420.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,1).
%F From _Andrew Howroyd_, Aug 28 2018: (Start)
%F a(n) = a(n-1) + a(n-2) for n > 2.
%F a(n) = 11*Fibonacci(n) - 3*Fibonacci(n-1).
%F G.f.: x*(11 - 3*x)/(1 - x - x^2). (End)
%t LinearRecurrence[{1, 1}, {11, 8}, 60]
%o (Magma) I:=[11, 8]; [n le 2 select I[n] else Self(n-1)+ Self(n-2): n in [1..40]]; \\ _Vincenzo Librandi_, Feb 18 2012
%o (PARI) Vec((11 - 3*x)/(1 - x - x^2) + O(x^30)) \\ _Andrew Howroyd_, Aug 28 2018
%o (Python)
%o def aupton(terms):
%o alst = [11, 8]
%o for n in range(3, terms+1):
%o alst.append(alst[-1] + alst[-2])
%o return alst[:terms]
%o print(aupton(36)) # _Michael S. Branicky_, Nov 08 2021
%Y Cf. A000045.
%K nonn,easy
%O 1,1
%A _Vladimir Joseph Stephan Orlovsky_, Feb 07 2012