login
Fibonacci sequence beginning 11, 8.
4

%I #25 Apr 11 2024 16:30:23

%S 11,8,19,27,46,73,119,192,311,503,814,1317,2131,3448,5579,9027,14606,

%T 23633,38239,61872,100111,161983,262094,424077,686171,1110248,1796419,

%U 2906667,4703086,7609753,12312839,19922592,32235431,52158023,84393454,136551477

%N Fibonacci sequence beginning 11, 8.

%H Vincenzo Librandi, <a href="/A206420/b206420.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,1).

%F From _Andrew Howroyd_, Aug 28 2018: (Start)

%F a(n) = a(n-1) + a(n-2) for n > 2.

%F a(n) = 11*Fibonacci(n) - 3*Fibonacci(n-1).

%F G.f.: x*(11 - 3*x)/(1 - x - x^2). (End)

%t LinearRecurrence[{1, 1}, {11, 8}, 60]

%o (Magma) I:=[11, 8]; [n le 2 select I[n] else Self(n-1)+ Self(n-2): n in [1..40]]; \\ _Vincenzo Librandi_, Feb 18 2012

%o (PARI) Vec((11 - 3*x)/(1 - x - x^2) + O(x^30)) \\ _Andrew Howroyd_, Aug 28 2018

%o (Python)

%o def aupton(terms):

%o alst = [11, 8]

%o for n in range(3, terms+1):

%o alst.append(alst[-1] + alst[-2])

%o return alst[:terms]

%o print(aupton(36)) # _Michael S. Branicky_, Nov 08 2021

%Y Cf. A000045.

%K nonn,easy

%O 1,1

%A _Vladimir Joseph Stephan Orlovsky_, Feb 07 2012