This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206397 E.g.f. A(x) = series reversion of log(1+x)-x^3/3. 0
 1, 1, 3, 21, 171, 1821, 24123, 373941, 6693291, 135897741, 3081969243, 77250233061, 2120715880011, 63277499072061, 2039050439495163, 70571948084252181, 2610905715855178731, 102824333281385113581 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS FORMULA a(n)=(sum(k=0..n-1, (n+k-1)!*sum(j=0..k, (-1)^j/(k-j)!*sum(i=0..min(j,(n+j-1)/3),(1/i!)*(-1)^i* stirling1(n-3*i+j-1,j-i)/(3^i*(n-3*i+j-1)!))))), n>0. a(n) ~ n^(n-1) / (sqrt(s*(2+s^3)) * exp(n) * r^(n-1/2)), where s = 1/3*(-1 + (25/2 - (3*sqrt(69))/2)^(1/3) + (1/2*(25 + 3*sqrt(69)))^(1/3)) = 0.75487766624669276... is the root of the equation s^2*(1+s) = 1 and r = log(1+s) - s^3/3 = 0.4190125789786... - Vaclav Kotesovec, Jan 22 2014 MATHEMATICA Rest[CoefficientList[InverseSeries[Series[Log[1+x]-x^3/3, {x, 0, 20}], x], x]*Range[0, 20]!] (* Vaclav Kotesovec, Jan 22 2014 *) PROG (Maxima) a(n):=(sum((n+k-1)!*sum((-1)^j/(k-j)!*sum((1/i!)*(-1)^i*stirling1(n-3*i+j-1, j-i)/(3^i*(n-3*i+j-1)!), i, 0, min(j, (n+j-1)/3)), j, 0, k), k, 0, n-1)); CROSSREFS Sequence in context: A189475 A206178 A233861 * A247480 A228923 A287995 Adjacent sequences:  A206394 A206395 A206396 * A206398 A206399 A206400 KEYWORD nonn AUTHOR Vladimir Kruchinin, Feb 07 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 22:27 EST 2019. Contains 329880 sequences. (Running on oeis4.)