login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206397 E.g.f. A(x) = series reversion of log(1+x)-x^3/3. 0
1, 1, 3, 21, 171, 1821, 24123, 373941, 6693291, 135897741, 3081969243, 77250233061, 2120715880011, 63277499072061, 2039050439495163, 70571948084252181, 2610905715855178731, 102824333281385113581 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Table of n, a(n) for n=1..18.

FORMULA

a(n)=(sum(k=0..n-1, (n+k-1)!*sum(j=0..k, (-1)^j/(k-j)!*sum(i=0..min(j,(n+j-1)/3),(1/i!)*(-1)^i* stirling1(n-3*i+j-1,j-i)/(3^i*(n-3*i+j-1)!))))), n>0.

a(n) ~ n^(n-1) / (sqrt(s*(2+s^3)) * exp(n) * r^(n-1/2)), where s = 1/3*(-1 + (25/2 - (3*sqrt(69))/2)^(1/3) + (1/2*(25 + 3*sqrt(69)))^(1/3)) = 0.75487766624669276... is the root of the equation s^2*(1+s) = 1 and r = log(1+s) - s^3/3 = 0.4190125789786... - Vaclav Kotesovec, Jan 22 2014

MATHEMATICA

Rest[CoefficientList[InverseSeries[Series[Log[1+x]-x^3/3, {x, 0, 20}], x], x]*Range[0, 20]!] (* Vaclav Kotesovec, Jan 22 2014 *)

PROG

(Maxima) a(n):=(sum((n+k-1)!*sum((-1)^j/(k-j)!*sum((1/i!)*(-1)^i*stirling1(n-3*i+j-1, j-i)/(3^i*(n-3*i+j-1)!), i, 0, min(j, (n+j-1)/3)), j, 0, k), k, 0, n-1));

CROSSREFS

Sequence in context: A189475 A206178 A233861 * A247480 A228923 A287995

Adjacent sequences:  A206394 A206395 A206396 * A206398 A206399 A206400

KEYWORD

nonn

AUTHOR

Vladimir Kruchinin, Feb 07 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 19 09:19 EST 2018. Contains 299330 sequences. (Running on oeis4.)