This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206329 Squarefree sums of 2 successive primes. 4
 5, 30, 42, 78, 138, 186, 210, 222, 258, 330, 390, 410, 434, 462, 618, 762, 786, 798, 906, 930, 946, 966, 978, 1002, 1030, 1230, 1290, 1334, 1374, 1410, 1446, 1482, 1518, 1542, 1606, 1722, 1758, 1770, 1794, 1830, 1866, 1878, 1938, 1974, 2006, 2022, 2190, 2226 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Intersection of A001043 and A005117, both infinite, but is their intersection infinite? Also note that the only prime is a(1)=5 and there are no semiprimes (products of 2 primes A001358). LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 EXAMPLE a(1)=5=A001043(1)=A005117(4), a(2)=30=A001043(6)=A005117(19), a(3)=42=A001043(8)=A005117(28). MAPLE N:= 1000: # to get the first N terms count:= 0: p:= 2: while count < N do   pp:= nextprime(p);   if numtheory:-issqrfree(p+pp) then     count:= count+1;     A[count]:= p+pp;   fi;   p:= pp; od: seq(A[i], i=1..N); # Robert Israel, Jul 20 2014 MATHEMATICA Select[Table[Prime[n] + Prime[n + 1], {n, 300}], SquareFreeQ] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2012 *) PROG (PARI) p=2; forprime(q=3, 1e4, if(issquarefree(p+q), print1(p+q", ")); p=q) \\ Charles R Greathouse IV, Feb 08 2012 CROSSREFS Cf. A001043, A001358, A005117, A206462. Sequence in context: A222463 A097252 A169610 * A043886 A044463 A270811 Adjacent sequences:  A206326 A206327 A206328 * A206330 A206331 A206332 KEYWORD nonn AUTHOR Zak Seidov, Feb 06 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 19:24 EST 2018. Contains 318106 sequences. (Running on oeis4.)