login
A206309
Villegas-Zagier polynomial V(3*n) evaluated at x=0.
3
1, -2, -152, -6848, -8103296, 22483912960, -8062284861440, 196434444070666240, 532650564250569441280, 2039228675045199496806400, -5209573728611533514689740800, 1172773847164346785332278906060800, -14811687653648930753369603156895334400, -612441229040578815278149020969838051328000
OFFSET
0,2
COMMENTS
Numbers B_k in Villegas/Zagier "Which primes are sums of two cubes?"
REFERENCES
H. Cohen, Number Theory. Volume I: Tools and Diophantine Equations, Springer-Verlag, 2007, p. 378.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..156 (terms 0..66 from Vincenzo Librandi)
Fernando Rodriguez Villegas, Don Zagier, Which primes are sums of two cubes?, CMS Conference Proceedings 15 (1995), pp. 295-306.
PROG
(PARI) { A206309(n) = my(p0, p1, q); p0 = 0; p1 = 1; for(m=1, 3*n, q = (8*x^3-1)*deriv(p1) - (16*(m-1)+3)*x^2*p1 - 4*(m-1)*(2*(m-1)-1)*x*p0; p0 = p1; p1 = q; ); subst(p1, x, 0); } \\ Max Alekseyev, Dec 05 2017
CROSSREFS
The first column of A166243.
Sequence in context: A024245 A113576 A102458 * A265880 A064436 A012605
KEYWORD
sign
AUTHOR
Joerg Arndt, Feb 06 2012
EXTENSIONS
Edited by Max Alekseyev, Dec 05 2017
STATUS
approved