This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206296 Prime factorization representation of Fibonacci polynomials: a(0) = 1, a(1) = 2, and for n > 1, a(n) = A003961(a(n-1)) * a(n-2). 19
 1, 2, 3, 10, 63, 2750, 842751, 85558343750, 2098355820117528699, 769999781728184386440152910156250, 2359414683424785920146467280333749864720543920418139851 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS These are numbers matched to the Fibonacci polynomials according to the scheme explained in A206284 (see also A104244). In this case, the exponent of the k-th prime p_k in the prime factorization of a(n) indicates the coefficient of term x^(k-1) in the n-th Fibonacci polynomial. See the examples. LINKS Eric Weisstein's World of Mathematics,  Fibonacci polynomial Wikipedia, Fibonacci polynomials FORMULA From Antti Karttunen, Jul 29 2015: (Start) a(0) = 1, a(1) = 2, and for n >= 2, a(n) = A003961(a(n-1)) * a(n-2). Other identities. For all n >= 0: A001222(a(n)) = A000045(n). [When each polynomial is evaluated at x=1.] A048675(a(n)) = A000129(n). [at x=2.] A090880(a(n)) = A006190(n). [at x=3.] (End) EXAMPLE n    a(n)   prime factorization    Fibonacci polynomial ------------------------------------------------------------ 0       1   (empty)                F_0(x) = 0 1       2   p_1                    F_1(x) = 1 2       3   p_2                    F_2(x) = x 3      10   p_3 * p_1              F_3(x) = x^2 + 1 4      63   p_4 * p_2^2            F_4(x) = x^3 + 2x 5    2750   p_5 * p_3^3 * p_1      F_5(x) = x^4 + 3x^2 + 1 6  842751   p_6 * p_4^4 * p_2^3    F_6(x) = x^5 + 4x^3 + 3x MATHEMATICA c[n_] := CoefficientList[Fibonacci[n, x], x] f[n_] := Product[Prime[k]^c[n][[k]], {k, 1, Length[c[n]]}] Table[f[n], {n, 1, 11}]  (* A206296 *) PROG (Scheme, with memoization-macro definec) (definec (A206296 n) (cond ((<= n 1) (+ 1 n)) (else (* (A003961 (A206296 (- n 1))) (A206296 (- n 2)))))) (Python) from sympy import factorint, prime, primepi from operator import mul def a003961(n):     F=factorint(n)     return 1 if n==1 else reduce(mul, [prime(primepi(i) + 1)**F[i] for i in F]) l=[1, 2] for n in xrange(2, 11):     l+=[a003961(l[n - 1])*l[n - 2], ] print l # Indranil Ghosh, Jun 21 2017 CROSSREFS Cf. A000045, A000129, A001222, A003961, A006190, A049310, A048675, A090880, A104244, A206284. Other such mappings:   polynomial sequence      integer sequence   -----------------------------------------   x^n                      A000040   (x+1)^n                  A007188   n*x^(n-1)                A062457   (1-x^n)/(1-x)            A002110   n + (n-1)x + ... +x^n    A006939   Stern polynomials        A260443 Sequence in context: A093856 A173097 A088221 * A124923 A291935 A088222 Adjacent sequences:  A206293 A206294 A206295 * A206297 A206298 A206299 KEYWORD nonn AUTHOR Clark Kimberling, Feb 05 2012 EXTENSIONS a(0) = 1 prepended (to indicate 0-polynomial), Name changed, Comments and Example section rewritten by Antti Karttunen, Jul 29 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 17:12 EDT 2018. Contains 316237 sequences. (Running on oeis4.)