login
G.f. satisfies: A(x) = Sum_{n>=0} Product_{k=1..n} Series_Reversion( x/A(x^k) ).
0

%I #6 Mar 30 2012 18:37:35

%S 1,1,2,5,18,78,415,2467,16212,114623,863229,6858780,57156213,

%T 497147291,4497291265,42189445764,409478828567,4103901097024,

%U 42403116824997,451059832858894,4933844398096693,55436157047213427,639215949145395559,7557505365363885063

%N G.f. satisfies: A(x) = Sum_{n>=0} Product_{k=1..n} Series_Reversion( x/A(x^k) ).

%F G.f.: A(x) = Sum_{n>=0} Product_{k=1..n} G_k(x), where G_n(x) is defined by:

%F (1) G_n(x) = Series_Reversion( x/A(x^n) ),

%F (2) G_n(x) = x * A( G_n(x)^n ).

%e G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 18*x^4 + 78*x^5 + 415*x^6 + 2467*x^7 +...

%e such that, by definition,

%e A(x) = 1 + G_1(x) + G_1(x)*G_2(x) + G_1(x)*G_2(x)*G_3(x) + G_1(x)*G_2(x)*G_3(x)*G_4(x) +...

%e where G_n(x) satisfies: G_n( x/A(x^n) ) = x.

%e The first few expansions of G_n(x) begin:

%e G_1(x) = x + x^2 + 3*x^3 + 12*x^4 + 59*x^5 + 329*x^6 + 2035*x^7 +...

%e G_2(x) = x + x^3 + 4*x^5 + 22*x^7 + 144*x^9 + 1045*x^11 + 8159*x^13 +...

%e G_3(x) = x + x^4 + 5*x^7 + 35*x^10 + 289*x^13 + 2626*x^16 +...

%e G_4(x) = x + x^5 + 6*x^9 + 51*x^13 + 510*x^17 + 5597*x^21 +...

%e G_5(x) = x + x^6 + 7*x^11 + 70*x^16 + 823*x^21 + 10608*x^26 +...

%e G_6(x) = x + x^7 + 8*x^13 + 92*x^19 + 1244*x^25 + 18434*x^31 +...

%e G_7(x) = x + x^8 + 9*x^15 + 117*x^22 + 1789*x^29 + 29975*x^36 +...

%e where G_n(x) = x*A( G_n(x)^n ).

%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n,prod(k=1,m,serreverse(x/subst(A,x,x^k +x*O(x^n))))));polcoeff(A,n)}

%o for(n=0,45,print1(a(n),", "))

%Y Cf. A206290.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Feb 05 2012