The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206263 Number of (n+1) X 5 0..1 arrays with the number of rightwards and downwards edge increases in each 2 X 2 subblock equal to the number in all its horizontal and vertical neighbors. 1
 50, 64, 135, 260, 471, 800, 1296, 2010, 3012, 4376, 6197, 8576, 11637, 15512, 20358, 26342, 33658, 42512, 53139, 65788, 80739, 98288, 118764, 142514, 169920, 201384, 237345, 278264, 324641, 377000, 435906, 501950, 575766, 658016, 749407, 850676 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Column 4 of A206267. LINKS R. H. Hardin, Table of n, a(n) for n = 1..210 FORMULA Empirical: a(n) = 5*a(n-1) - 9*a(n-2) + 5*a(n-3) + 5*a(n-4) - 9*a(n-5) + 5*a(n-6) -a(n-7) for n>8. Conjectures from Colin Barker, Jun 15 2018: (Start) G.f.: x*(50 - 186*x + 265*x^2 - 89*x^3 - 184*x^4 + 240*x^5 - 114*x^6 + 20*x^7) / ((1 - x)^6*(1 + x)). a(n) = (1680 + 1044*n + 580*n^2 + 155*n^3 + 20*n^4 + n^5) / 120 for n>1 and even. a(n) = (1800 + 1044*n + 580*n^2 + 155*n^3 + 20*n^4 + n^5) / 120 for n>1 and odd. (End) EXAMPLE Some solutions for n=4: ..1..1..0..0..1....1..1..0..0..0....1..1..1..1..0....1..0..0..0..0 ..0..1..1..0..0....1..0..0..0..0....0..0..0..0..0....1..0..0..0..0 ..0..0..1..1..0....1..0..0..0..0....0..0..0..0..0....1..0..0..0..0 ..1..0..0..1..1....0..0..0..0..0....0..0..0..0..0....1..0..0..0..0 ..1..1..0..0..1....0..0..0..0..0....0..0..0..0..0....1..0..0..0..0 CROSSREFS Cf. A206267. Sequence in context: A179796 A215468 A109552 * A007692 A025285 A092541 Adjacent sequences:  A206260 A206261 A206262 * A206264 A206265 A206266 KEYWORD nonn AUTHOR R. H. Hardin, Feb 05 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 21:35 EST 2021. Contains 340247 sequences. (Running on oeis4.)