login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206164 Number of (n+1) X 4 0..3 arrays with every 2 X 2 subblock in a row having an equal number of equal diagonal or equal antidiagonal elements, adjacent rows differing in this number, and new values 0..3 introduced in row major order. 1
641, 14182, 463878, 10599630, 345652310, 7934434238, 257597022598, 5939045721006, 191982939898678, 4445181274166302, 143088306500843366, 3326865018494656782, 106651001017976490518, 2489743322080060401278 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Column 3 of A206169.

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = a(n-1) + 745*a(n-2) - 489*a(n-3) - 5808*a(n-4) + 1584*a(n-5) + 10368*a(n-6) for n>7.

Empirical g.f.: x*(641 + 13541*x - 27849*x^2 - 116389*x^3 + 121496*x^4 + 247632*x^5 - 70272*x^6) / ((1 - x - 4*x^2)*(1 - 741*x^2 - 252*x^3 + 2592*x^4)). - Colin Barker, Jun 13 2018

EXAMPLE

Some solutions for n=4:

..0..0..0..1....0..0..0..1....0..0..0..0....0..0..0..0....0..1..1..2

..0..1..0..0....0..1..0..0....0..1..0..1....0..0..0..0....1..1..0..1

..2..1..2..2....0..1..2..1....1..0..1..0....1..0..1..0....0..3..0..1

..2..2..2..3....3..0..1..0....1..0..1..3....1..3..3..2....2..0..1..1

..1..3..1..0....1..2..1..2....0..0..0..1....1..1..3..3....2..3..2..2

CROSSREFS

Cf. A206169.

Sequence in context: A106488 A259997 A256806 * A206378 A229851 A268840

Adjacent sequences:  A206161 A206162 A206163 * A206165 A206166 A206167

KEYWORD

nonn

AUTHOR

R. H. Hardin, Feb 04 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 21:32 EDT 2020. Contains 337910 sequences. (Running on oeis4.)