

A206099


Decimal expansion of the constant that satisfies gamma(x) = sqrt(Pi) and x > 1/2.


1



2, 8, 6, 5, 1, 4, 9, 6, 6, 4, 9, 7, 6, 4, 7, 3, 4, 2, 7, 4, 8, 8, 5, 5, 5, 4, 2, 2, 7, 0, 3, 7, 0, 9, 6, 4, 1, 2, 5, 1, 1, 0, 9, 6, 0, 6, 2, 5, 2, 8, 6, 9, 5, 6, 5, 1, 8, 7, 1, 0, 2, 3, 2, 3, 9, 5, 1, 5, 5, 5, 3, 8, 7, 1, 0, 2, 6, 2, 8, 6, 1, 5, 1, 4, 1, 2, 1
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Note that gamma(1/2) = sqrt(Pi).


LINKS

G. C. Greubel, Table of n, a(n) for n = 1..5000


EXAMPLE

c = 2.8651496649764734274885554227037096412511096062528695651871... such that gamma(c) = gamma(1/2) = sqrt(Pi) = 1.772453850905516027298...


MATHEMATICA

RealDigits[x/.FindRoot[Gamma[x]==Sqrt[Pi], {x, 3}, WorkingPrecision> 120]] [[1]] (* Harvey P. Dale, Aug 08 2019 *)


PROG

(PARI) {a(n)=local(c=solve(x=0.51, 2.9, gamma(x)sqrt(Pi))); floor(10^n*c)%10}
for(n=0, 120, print1(a(n), ", "))


CROSSREFS

Cf. A002161.
Sequence in context: A028352 A132699 A248413 * A021353 A131361 A228042
Adjacent sequences: A206096 A206097 A206098 * A206100 A206101 A206102


KEYWORD

nonn,cons


AUTHOR

Paul D. Hanna, Feb 03 2012


STATUS

approved



